Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: Impact of polymeric combinations on supersaturation kinetics and dissolution performance

Author(s):  
Arun Butreddy ◽  
Sandeep Sarabu ◽  
Mashan Almutairi ◽  
Srinivas Ajjarapu ◽  
Praveen Kolimi ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marius Monschke ◽  
Kevin Kayser ◽  
Karl G. Wagner

AbstractAmong the great number of poorly soluble drugs in pharmaceutical development, most of them are weak bases. Typically, they readily dissolve in an acidic environment but are prone to precipitation at elevated pH. This was aimed to be counteracted by the preparation of amorphous solid dispersions (ASDs) using the pH-dependent soluble polymers methacrylic acid ethylacrylate copolymer (Eudragit L100–55) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) via hot-melt extrusion. The hot-melt extruded ASDs were of amorphous nature and single phased with the presence of specific interactions between drug and polymer as revealed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR). The ASDs were milled and classified into six particle size fractions. We investigated the influence of particle size, drug load, and polymer type on the dissolution performance. The best dissolution performance was achieved for the ASD made from Eudragit L100–55 at a drug load of 10%, whereby the dissolution rate was inversely proportional to the particle size. Within a pH-shift dissolution experiment (from pH 1 to pH 6.8), amorphous-amorphous phase separation occurred as a result of exposure to acidic medium which caused markedly reduced dissolution rates at subsequent higher pH values. Phase separation could be prevented by using enteric capsules (Vcaps Enteric®), which provided optimal dissolution profiles for the Eudragit L100–55 ASD at a drug load of 10%.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 379 ◽  
Author(s):  
Xiangyu Ma ◽  
Felix Müller ◽  
Siyuan Huang ◽  
Michael Lowinger ◽  
Xu Liu ◽  
...  

Amorphous solid dispersions (ASDs) are commonly used in the pharmaceutical industry to improve the dissolution and bioavailability of poorly water-soluble drugs. Hot melt extrusion (HME) has been employed to prepare ASD based products. However, due to the narrow processing window of HME, ASDs are normally obtained with high processing temperatures and mechanical stress. Interestingly, one-third of pharmaceutical compounds reportedly exist in hydrate forms. In this study, we selected carbamazepine (CBZ) dihydrate to investigate its solid-state changes during the dehydration process and the impact of the dehydration on the preparation of CBZ ASDs using a Leistritz micro-18 extruder. Various characterization techniques were used to study the dehydration kinetics of CBZ dihydrate under different conditions. We designed the extrusion runs and demonstrated that: 1) the dehydration of CBZ dihydrate resulted in a disordered state of the drug molecule; 2) the resulted higher energy state CBZ facilitated the drug solubilization and mixing with the polymer matrix during the HME process, which significantly decreased the required extrusion temperature from 140 to 60 °C for CBZ ASDs manufacturing compared to directly processing anhydrous crystalline CBZ. This work illustrated that the proper utilization of drug hydrates can significantly improve the processability of HME for preparing ASDs.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 58 ◽  
Author(s):  
Matthias E. Lauer ◽  
Reto Maurer ◽  
Anne T. De Paepe ◽  
Cordula Stillhart ◽  
Laurence Jacob ◽  
...  

2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Uttom Nandi ◽  
Md. S.H. Mithu ◽  
Andrew P. Hurt ◽  
Vivek Trivedi ◽  
Dennis Douroumis

Sign in / Sign up

Export Citation Format

Share Document