Experimental analysis and constitutive modelling of cyclic behaviour of 316L steels including hardening/softening and strain range memory effect in LCF regime

2018 ◽  
Vol 107 ◽  
pp. 54-78 ◽  
Author(s):  
J. Zhou ◽  
Z. Sun ◽  
P. Kanouté ◽  
D. Retraint
Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 307
Author(s):  
Tianyu Zhang ◽  
Xiaowei Wang ◽  
Wei Zhang ◽  
Tasnim Hassan ◽  
Jianming Gong

Fatigue–creep interaction (FCI) responses of P92 steel are investigated experimentally and numerically. A series of isothermal FCI experiments with tensile dwell time ranging from 60 to 600 s were conducted at two temperatures under strain-controlled trapezoidal waveform. The experimental responses demonstrate that the peak stress is influenced by temperature and dwell time. In other words, creep-mechanism-influenced stress relaxation during dwell time influences the peak stress and fatigue life (Nf). In addition, effects of strain range on peak stress and fatigue life under fatigue–creep loading are evaluated. Towards developing a simulation-based design methodology for high temperature components, first a conventional unified constitutive model is evaluated against the P92 steel experimental responses. Based on the simulation deficiency of the conventional model, a modified static recovery term incorporated in the kinematic hardening rule is proposed and satisfactory simulations of the P92 steel FCI responses are demonstrated. The experimental responses of P92 steel and strengths and deficiencies of the conventional and modified Chaboche models are elaborated identifying the important FCI phenomena and progress in constitutive model development for FCI response simulation.


2014 ◽  
Vol 8 (1) ◽  
pp. 227-247 ◽  
Author(s):  
M. Latour ◽  
G. Rizzano

Aiming to provide a contribution to the codification of design rules for dissipative joints to be applied to MRFs, in last five years, a comprehensive experimental and analytical work dealing with the cyclic behaviour of beam-to-column joints has been developed by the research group of the University of Salerno. In particular, the activity has regarded the study of both classical and innovative typologies characterized by the same initial stiffness and resistance but by different hysteretic behaviours due to the different source of energy dissipation supply imposed in the design process. In this paper, the main results of such a study, performed at the laboratory of materials and structures of the University of Salerno, are reported in order to provide an overview on the main mechanisms involved in the energy dissipation of partial-strength connections. A particular attention is given to the design issues by presenting the procedures aimed at providing to the joints adequate characteristics in terms of stiffness, resistance and ductility supply by hierarchically controlling the behaviour of the single joint components. Furthermore, the results of tested joints (classical and innovative) are compared in terms of hysteretic behaviour and energy dissipation supply in order to point out the advantages of the different connecting systems.


Rare Metals ◽  
2011 ◽  
Vol 30 (S1) ◽  
pp. 443-446 ◽  
Author(s):  
Zhanping Zhang ◽  
D. Delagnes ◽  
G. Bernhart

Sign in / Sign up

Export Citation Format

Share Document