Condensation heat transfer and two-phase frictional pressure drop in a single minichannel with R1234ze(E) and other refrigerants

2015 ◽  
Vol 50 ◽  
pp. 87-103 ◽  
Author(s):  
Davide Del Col ◽  
Matteo Bortolato ◽  
Marco Azzolin ◽  
Stefano Bortolin
2017 ◽  
Vol 25 (03) ◽  
pp. 1750027 ◽  
Author(s):  
M. Mostaqur Rahman ◽  
Keishi Kariya ◽  
Akio Miyara

Experiments on condensation heat transfer and adiabatic pressure drop characteristics of R134a were performed inside smooth and microfin horizontal tubes. The tests were conducted in the mass flux range of 50[Formula: see text]kg/m2s to 200[Formula: see text]kg/m2s, vapor quality range of 0 to 1 and saturation temperature range of 20[Formula: see text]C to 35[Formula: see text]C. The effects of mass velocity, vapor quality, saturation temperature, and microfin on the condensation heat transfer and frictional pressure drop were analyzed. It was discovered that the local heat transfer coefficients and frictional pressure drop increases with increasing mass flux and vapor quality and decreasing with increasing saturation temperature. Higher heat transfer coefficient and frictional pressure drop in microfin tube were observed. The present experimental data were compared with the existing well-known condensation heat transfer and frictional pressure drop models available in the open literature. The condensation heat transfer coefficient and frictional pressure drop of R134a in horizontal microfin tube was predicted within an acceptable range by the existing correlation.


Author(s):  
Suriyan Laohalertdecha ◽  
Somchai Wongwises

The effects of pitch and depth on the condensation heat transfer of R-134a flowing inside corrugated tubes are experimentally investigated. The test section is a horizontal tube-in-tube heat exchanger. The refrigerant flows in the inner tube and the water flows in the annulus. The length of heat exchanger is 2 m. A smooth tube and corrugated tubes having inner diameters of 8.7 mm are used as an inner tube. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm. The effects of corrugation pitch and depth on tube wall temperature, heat transfer coefficient and frictional pressure drop are discussed. The results illustrate that the maximum heat transfer coefficient and frictional pressure drop obtained from the corrugated tube are up to 50% and 70% higher than those obtained from the smooth tube, respectively.


Sign in / Sign up

Export Citation Format

Share Document