Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building

2015 ◽  
Vol 54 ◽  
pp. 190-203 ◽  
Author(s):  
Olivier Dumont ◽  
Sylvain Quoilin ◽  
Vincent Lemort
Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3450 ◽  
Author(s):  
Diana D’Agostino ◽  
Luigi Mele ◽  
Francesco Minichiello ◽  
Carlo Renno

Currently, ground source heat pump (GSHP) technology is being studied, as the use of the ground as a source of renewable energy allows significant energy savings to be obtained. Therefore, it is useful to quantify how these savings help to achieve the energy balance of a Net Zero Energy Building (NZEB) compared to an air source heat pump or a condensing boiler coupled to a chiller. This paper assesses how these savings affect the number of photovoltaic panels installed on the roof of a building to obtain the NZEB target. The study is conducted by dynamic simulation for a building used as a bed and breakfast, virtually placed in two Italian towns. The energy savings and reduction of CO2 emissions, the percentage of renewable energy used, and the photovoltaic surface needed are assessed. Finally, the discounted payback period is calculated. The results show that the GSHP, unlike the systems to which it is compared, allows an NZEB to be obtained by balancing yearly energy consumption with energy production systems which only use on-site renewable energy sources (by exploiting the surface available on the roof) for both of the climatic conditions considered. GSHP also allows primary energy requests equal to or less than 57 kWh/m2 to be obtained.


Author(s):  
Janar KALDER ◽  
Alo ALLIK ◽  
Hardi HÕIMOJA ◽  
Erkki JÕGI ◽  
Mart HOVI ◽  
...  

The article is concentrated on the energy storage problems arising from microgeneration in private households. The case study involves a small-scale wind and solar electricity production set in a net zero-energy building. Both the net zero-energy building and the microgeneration units are connected to an utility grid. The current article serves to confirm the hypothesis, that the self consumption is at its maximum with the annual 70/30 wind and solar energy mix of in favour of the wind. The maximal self consumption at no additional energy storage in a net zero-energy building is studied as well. Produced and consumed energies are equal, which satisfies the requirements for a net zero-energy building with the utility grid acting as an energy buffer. The consumed energy is used to operate a heat pump, heat up ventilation supply air, run ventilation fans, supplying non-shiftable loads (white goods, TV, lighting etc), heat up domestic hot water via heat pump. To express self consumption, we use the term of supply cover factor, which describes optimally the directly consumed energy in relationship to net consumption or production. In annual scale, the cover factors for a net zero-energy building are equal as the production and consumption are equal as well. Also, seasonal variations in self consumption are studied. According to study results, the annual maximal supply cover factor in a net zero-energy building is 0.375 with 70/30 wind/solar mix. Seasonally, the self consumption is at its maximum in summer when the supply cover factor equals to 0.49.


2016 ◽  
Vol 19 (3) ◽  
pp. 130 ◽  
Author(s):  
Jean Castaing-Lasvignottes ◽  
Mathieu David ◽  
Sidiki Simpore ◽  
Olivier Marc ◽  
François Garde

Sign in / Sign up

Export Citation Format

Share Document