Integration of renewable energy sources and the utility grid with the Net Zero Energy Building in Republic of Chad

Author(s):  
Fadoul Souleyman Tidjani ◽  
Ambrish Chandra
Author(s):  
Mostafa Esmaeili Shayan

The Net Zero Energy Building is generally described as an extremely energy-efficient building in which the residual electricity demand is provided by renewable energy. Solar power is also regarded to be the most readily available and usable form of renewable electricity produced at the building site. In contrast, energy conservation is viewed as an influential national for achieving a building’s net zero energy status. This chapter aims to show the value of the synergy between energy conservation and solar energy transfer to NZEBs at the global and regional levels. To achieve these goals, both energy demand building and the potential supply of solar energy in buildings have been forecasted in various regions, climatic conditions, and types of buildings. Building energy consumption was evaluated based on a bottom-up energy model developed by 3CSEP and data inputs from the Bottom-Up Energy Analysis System (BUENAS) model under two scenarios of differing degrees of energy efficiency intention. The study results indicate that the acquisition of sustainable energy consumption is critical for solar-powered net zero energy buildings in various building styles and environments. The chapter calls for the value of government measures that incorporate energy conservation and renewable energy.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3450 ◽  
Author(s):  
Diana D’Agostino ◽  
Luigi Mele ◽  
Francesco Minichiello ◽  
Carlo Renno

Currently, ground source heat pump (GSHP) technology is being studied, as the use of the ground as a source of renewable energy allows significant energy savings to be obtained. Therefore, it is useful to quantify how these savings help to achieve the energy balance of a Net Zero Energy Building (NZEB) compared to an air source heat pump or a condensing boiler coupled to a chiller. This paper assesses how these savings affect the number of photovoltaic panels installed on the roof of a building to obtain the NZEB target. The study is conducted by dynamic simulation for a building used as a bed and breakfast, virtually placed in two Italian towns. The energy savings and reduction of CO2 emissions, the percentage of renewable energy used, and the photovoltaic surface needed are assessed. Finally, the discounted payback period is calculated. The results show that the GSHP, unlike the systems to which it is compared, allows an NZEB to be obtained by balancing yearly energy consumption with energy production systems which only use on-site renewable energy sources (by exploiting the surface available on the roof) for both of the climatic conditions considered. GSHP also allows primary energy requests equal to or less than 57 kWh/m2 to be obtained.


2019 ◽  
Vol 11 (23) ◽  
pp. 6631 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Jessada Sresakoolchai ◽  
Lalida Kerinnonta

The concept of the Net Zero Energy Building (NZEB) has received more interest from researchers due to global warming concerns. This paper proposes to illustrate optional solutions to allow existing buildings to achieve NZEB goals. The aim of this study is to investigate factors that can improve existing building performance to be in line with the NZEB concept and be more sustainable. An existing townhouse in Washington, DC was chosen as the research target to study how to retrofit or reconstruct the design of a building according to the NZEB concept. The methodology of this research is modeling an existing townhouse to assess the current situation and creating optional models for improving energy efficiency of the townhouse in Revit and utilising renewable energy technology for energy supply. This residential building was modeled in three versions to compare changes in energy performance including improving thermal efficiency of building envelope, increasing thickness of the wall, and installing smart windows (switchable windows). These solutions can reduce energy and cost by approximately 8.16%, 10.16%, and 14.65%, respectively, compared to the original townhouse. Two renewable energy technologies that were considered in this research were photovoltaic and wind systems. The methods can be applied to reconstruct other existing buildings in the future.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 638
Author(s):  
Benjamin A. Saarloos ◽  
Jason C. Quinn

Given the enormous impact of buildings on energy consumption, it is important to continue the development of net-zero energy districts. Opportunities exist for energy efficiency and renewable energy on a district level that may not be feasible in individual buildings. Due to the intermittent nature of many renewable energy sources, net-zero energy districts are dependent on the energy grid. The novelty of this work is to quantify and optimize the economic cost and grid independence of a net-zero energy district using the National Western Center (NWC) in Denver, CO, USA as a case study. The NWC is a 100+ ha campus undergoing a major redevelopment process with a planned 170,000 m2 of total building space, an emphasis on sustainability, and a net-zero energy goal. Campus plans, building energy models, and renewable energy performance models of on-site solar, biomass, and thermal renewable energy sources are analyzed in multiple energy scenarios to achieve net-zero energy with and without on-site energy storage. Levelized cost of energy (LCOE) is optimized as a function of variables defining the energy and economic relationship with the grid. Discussion herein addresses trade-offs between net-zero energy scenarios in terms of energy load, LCOE, storage, and grid dependence.


Sign in / Sign up

Export Citation Format

Share Document