Breast Patient Setup Error Assessment: Comparison of Electronic Portal Image Devices and Cone-Beam Computed Tomography Matching Results

2010 ◽  
Vol 78 (4) ◽  
pp. 1235-1243 ◽  
Author(s):  
Rajko Topolnjak ◽  
Jan-Jakob Sonke ◽  
Jasper Nijkamp ◽  
Coen Rasch ◽  
Danny Minkema ◽  
...  
2010 ◽  
Vol 49 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Hideomi Yamashita ◽  
Akihiro Haga ◽  
Yayoi Hayakawa ◽  
Kae Okuma ◽  
Kiyoshi Yoda ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. 153303381985384
Author(s):  
Wei Wang ◽  
Ting Yu ◽  
Min Xu ◽  
Qian Shao ◽  
Yingjie Zhang ◽  
...  

Objective: To compare differences in setup error assessment and correction between planar kilovolt images and cone beam computed tomography images for external beam partial breast irradiation during free breathing. Methods: Nineteen patients who received external beam partial breast irradiation after breast-conserving surgery were recruited. Interfraction setup error was acquired using planar kilovolt images and cone beam computed tomography. After online setup correction, the residual error was calculated, and the setup error was compared. The residual error and setup margin were quantified for planar kilovolt and cone beam computed tomography images. Results: The largest setup error was observed in the anteroposterior direction for both cone beam computed tomography and planar kilovolt imaging (−1.45 mm, 1.74 mm). The cone beam computed tomography–based setup error (systematic error [Σ]) was less than the planar kilovolt images based on Σ in the anteroposterior direction (–1.2 mm vs 2.00 mm; P = .005), and no significant differences were observed for random error (σ) in 3 dimensions ( P = .948, .376, .314). After online setup correction, cone beam computed tomography significantly reduced the residual setup error compared with planar kilovolt images in the anteroposterior direction (Σ: −0.20 mm vs 0.50 mm, P = .008; σ: 0.45 mm vs 1.34 mm, P = .002). The cone beam computed tomography–based setup margin was smaller than the planar kilovolt image-based setup margin in the anteroposterior direction (−1.39 mm vs 5.57 mm, P = .003; 0.00 mm vs 3.20 mm, P = .003). Conclusions: Discrepancy between the setup errors observed with planar kilovolt and cone beam computed tomography was obvious in the anteroposterior direction. Compared to cone beam computed tomography, the elapsed treatment time was smaller when the initial alignment used kilovolt planar imaging. Whether using planar kilovolt or cone beam computed tomography, residual errors can be reduced to 1.5 mm for external beam partial breast irradiation procedures.


2016 ◽  
Vol 41 (3) ◽  
pp. 225-229 ◽  
Author(s):  
Vikneswary Batumalai ◽  
Lois Holloway ◽  
Geoff P. Delaney

2016 ◽  
Vol 61 (6) ◽  
pp. 2552-2561 ◽  
Author(s):  
Hanlin Wan ◽  
Jenny Bertholet ◽  
Jiajia Ge ◽  
Per Poulsen ◽  
Parag Parikh

2010 ◽  
Vol 12 (4) ◽  
pp. 413-420 ◽  
Author(s):  
Peter C. Gerszten ◽  
Edward A. Monaco ◽  
Mubina Quader ◽  
Josef Novotny ◽  
Jong Oh Kim ◽  
...  

Object Cone beam computed tomography (CBCT) image guidance technology has been adopted for use in spine radiosurgery. There is concern regarding the ability to safely and accurately perform spine radiosurgery without the use of implanted fiducials for image guidance in postsurgical cases in which titanium instrumentation and/or methylmethacrylate (MMA) has been implanted. In this study the authors prospectively evaluated the accuracy of the patient setup for spine radiosurgery by using CBCT image guidance in the context of orthopedic hardware at the site of disease. Methods The positioning deviations of 31 single-fraction spine radiosurgery treatments in patients with spinal implants were prospectively evaluated using the Elekta Synergy S 6-MV linear accelerator with a beam modulator and CBCT image guidance combined with a robotic couch that allows positioning correction in 3 translational and 3 rotational directions. To measure patient movement, 3 quality-assurance CBCT studies were performed and recorded: before, halfway through, and after radiosurgical treatment. The positioning data and fused images of planning CTs and CBCTs from the treatments were analyzed to determine intrafractional patient movements. From each of 3 CBCTs, 3 translational and 3 rotational coordinates were obtained. Results The prescribed dose to the gross tumor volume for the cohort was 12–18 Gy (mean 14 Gy) utilizing 9–14 coplanar intensity-modulated radiation therapy (IMRT) beams (mean 10 beams). At the halfway point of the radiosurgery, the translational variations and standard deviations were 0.6 ± 0.6, 0.4 ± 0.4, and 0.5 ± 0.5 mm in the lateral (X), longitudinal (Y), and anteroposterior (Z) directions, respectively. The magnitude of the 3D vector (X,Y,Z) was 1.1 ± 0.7 mm. Similarly, the variations immediately after treatment were 0.5 ± 0.3, 0.4 ± 0.4, and 0.5 ± 0.6 mm along the X, Y, and Z directions, respectively. The 3D vector was 1.0 ± 0.6 mm. The mean rotational angles were 0.3 ± 0.4, 0.5 ± 0.6, and 0.3 ± 0.4° along yaw, roll, and pitch, respectively, at the halfway point and 0.3 ± 0.4, 0.6 ± 0.6, and 0.4 ± 0.5° immediately after treatment. Conclusions Cone beam CT image guidance used for patient setup for spine radiosurgery was highly accurate despite the presence of spinal instrumentation and/or MMA at the level of the target volume. The presence of such spinal implants does not preclude safe treatment via spine radiosurgery in these patients.


Sign in / Sign up

Export Citation Format

Share Document