scholarly journals Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending

2018 ◽  
Vol 151 ◽  
pp. 152-164 ◽  
Author(s):  
Jisik Choi ◽  
Jinwoo Lee ◽  
Hyuk Jong Bong ◽  
Myoung-Gyu Lee ◽  
Frederic Barlat
2021 ◽  
Vol 877 ◽  
pp. 83-89
Author(s):  
Aeksuwat Nakwattanaset ◽  
Surasak Suranuntchai

The manufacturing industries for automotive parts aim to develop technologies for reducing vehicle weight in order to decrease fuel consumption. However, passive safety function for drivers and passengers must not be impaired or should be even improved. Therefore, advanced high strength steel sheet plays more and more important role in designing automotive components. Nowadays, prediction of formability for sheet metal stamping has high capability more than the past. The major challenge is springback prediction. Moreover, it assists in the tooling design to correctly compensate for springback. Especially in automotive production, springback effects have been generally exhibited distinct after forming process of the high strength steel sheets. The springback effect occurred in the deformed state of metal parts must be taken into account by designing any sheet metal panels. Then, the purpose of the present research is to investigate the springback phenomenon of an automotive part named Reinforcement Rocker RL made from an advanced high strength steel grade JAC780Y, after stamping. In addition, the tools design has been carried out. Finite Element (FE) program known as DYNAFORM (based on LS-DYNA solver), has been applied to analyze and improve the springback effect on such forming part. An anisotropic material model according to type 36 (MAT_036 3-PARAMETER_BARAT) was applied. The results obtained from simulations were compared with required parts in each section. Then, the die surface from compensation in 2nd step forming was modified to use. Finally, the simulation part was verified with the real stamping part. It was found that the finite element simulation showed high capability for prediction and compensation of springback in high strength steel sheets forming.


2018 ◽  
Vol 15 ◽  
pp. 684-692
Author(s):  
Baowei Ma ◽  
Dean Meng ◽  
Xi Gu ◽  
Xu Ma ◽  
Dawei Zhang ◽  
...  

2016 ◽  
Vol 107 ◽  
pp. 43-57 ◽  
Author(s):  
Zhengyang Cai ◽  
Keshan Diao ◽  
Xiangdong Wu ◽  
Min Wan

2010 ◽  
Vol 97-101 ◽  
pp. 200-203 ◽  
Author(s):  
Ke Chen ◽  
Jian Ping Lin ◽  
Mao Kang Lv ◽  
Li Ying Wang

With the increasing use of finite element analysis method in sheet forming simulations, springback predictions of advanced high strength steel (AHSS) sheet are still far from satisfactory precision. The main purpose of this paper was to provide a method for accurate springback prediction of AHSS sheet. Material model with Hill’48 anisotropic yield criterion and nonlinear isotropic/kinematic hardening rule were applied to take account the anisotropic yield behavior and the Bauschinger effect during forming processes. U-channel forming and springback simulation was performed using ABAQUS software. High strength DP600 sheet was investigated in this work. The simulation results obtained with the proposed material model agree well with the experimental results, which show a remarkable improvement of springback prediction compared with the commonly used isotropic hardening model.


Author(s):  
Wei Tong

An accurate description of the directional dependence of uniaxial tensile yielding and plastic flow in advanced high-strength steel sheets may require either a nonassociated plasticity model with separate quadratic yield function and flow potential or an associated plasticity model with nonquadratic yield function. In this paper, Gotoh's fourth-order homogeneous polynomial yield function is applied to model two advanced high-strength steel sheets in an associated plasticity model. Both the parameter selection for calibrating Gotoh's yield function and its positivity and convexity verification are given in some detail. Similarities and differences between the associated plasticity model presented here and the nonassociated one appeared in the literature are discussed in terms of the directional dependence of yield stresses and plastic strain ratios under uniaxial tension and yield stresses under biaxial tension loading.


Sign in / Sign up

Export Citation Format

Share Document