Numerical study of natural convection in an open cavity considering temperature-dependent fluid properties

2011 ◽  
Vol 50 (11) ◽  
pp. 2184-2197 ◽  
Author(s):  
José Octavio Juárez ◽  
Jesús Fernando Hinojosa ◽  
Jesús Perfecto Xamán ◽  
Manuel Pérez Tello
2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Victoria Timchenko

This lecture is dedicated to the memory of Professor Eddie Leonardi, formerly International Heat Transfer Conference (IHTC-13) Secretary, who tragically died at an early age on December 14, 2008. Eddie Leonardi had a large range of research interests: he worked in both computational fluid dynamics/heat transfer and refrigeration and air-conditioning for over 25 years. However starting from his Ph.D. ‘A numerical study of the effects of fluid properties on natural convection’ awarded in 1984, one of his main passions has been natural convection and therefore the focus of this lecture will be on what Eddie Leonardi has achieved in numerical and experimental investigations of laminar natural convective flows. A number of examples will be presented which illustrate important difficulties of numerical calculations and experimental comparisons. Eddie Leonardi demonstrated that variable properties have important effects and significant differences occur when different fluids are used, so that dimensionless formulation is not appropriate when dealing with flows of fluids with significant changes in transport properties. Difficulties in comparing numerical solutions with either numerically generated data or experimental results will be discussed with reference to two-dimensional natural convection and three-dimensional Rayleigh–Bénard convection. For a number of years Eddie Leonardi was involved in a joint US-French-Australian research program—the MEPHISTO experiment on crystal growth—and studied the effects of convection on solidification and melting under microgravity conditions. Some results of this research will be described. Finally, some results of experimental and numerical studies of natural convection for building integrated photovoltaic (BIPV) applications in which Eddie Leonardi had been working in the last few years will be also presented.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 391-399 ◽  
Author(s):  
Marina Astanina ◽  
Mikhail Sheremet ◽  
Jawali Umavathi

A numerical study of the natural convection combined with thermal radiation inside a square porous cavity filled with a fluid of temperature-dependent viscosity is carried out. The side horizontal walls are assumed to be adiabatic while both the left and right vertical walls are kept at constant but different temperatures. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. The governing equations formulated in dimensionless stream function, vorticity, and temperature variables are solved using finite difference method. A parametric analysis illustrating the effects of the radiation parameter (0 ? Rd ? 10), Darcy number (10?5 ? Da ? 10?2), and viscosity variation parameter (0 ? C ? 6) on fluid flow and heat transfer is implemented. The results show an essential intensification of convective flow with an increase in the radiation parameter.


2017 ◽  
Vol 36 ◽  
pp. 47-58
Author(s):  
Nishat Tasnim ◽  
MZI Bangalee

In this study, effect of boundary conditions on natural convection flow in an open cavity has been studied numerically. The computational fluid dynamics (CFD) simulations are performed to investigate the natural convection flow phenomena within the cavity. The ?-? turbulence model is chosen to capture the turbulence phenomena of the flow. A numerical case is chosen from literature to validate the method used in this study. For accurate prediction of the flow phenomenon a sufficiently large surrounding domain around the cavity is considered. The effects of boundary conditions applied in the apertures of the open cavity are observed.GANIT J. Bangladesh Math. Soc.Vol. 36 (2016) 47-58


Author(s):  
Victoria Timchenko

This lecture is dedicated to the memory of Professor Eddie Leonardi, formerly International Heat Transfer Conference (IHTC-13) Secretary, who tragically died at an early age on December 14, 2008. Eddie Leonardi had a large range of research interests: he worked in both computational fluid dynamics/heat transfer and refrigeration and air-conditioning for over 25 years. However starting from his PhD ‘A numerical Study of the effects of fluid properties on Natural Convection’ awarded in 1984, one of his main passions has been natural convection and therefore the focus of this lecture will be on what Eddie Leonardi has achieved in numerical and experimental investigations of laminar natural convective flows. A number of examples will be presented which illustrate important difficulties of numerical calculations and experimental comparisons. Eddie Leonardi demonstrated that variable properties have important effects and significant differences occur when different fluids are used, so that non-dimensionalisation is not an appropriate tool when dealing with fluids in thermally driven flows in which there are significant changes in transport properties. Difficulties in comparing numerical solutions with either numerically generated data or experimental results will be discussed with reference to two-dimensional natural convection and three-dimensional Rayleigh-Be´nard convection in bounded domains with conducting boundaries. For a number of years Eddie Leonardi was involved in a joint US-French-Australian research program — the MEPHISTO experiment on crystal growth — and studied the effects of convection on solidification and melting under microgravity conditions. The results of this research will be described. Finally, results of experimental and numerical studies of natural convection for Building Integrated Photovoltaic (BIPV) applications in which Eddie Leonardi had been working in the last few years will also be presented.


Sign in / Sign up

Export Citation Format

Share Document