Thermal conductivity of individual multiwalled carbon nanotubes

2012 ◽  
Vol 62 ◽  
pp. 40-43 ◽  
Author(s):  
M.K. Samani ◽  
N. Khosravian ◽  
G.C.K. Chen ◽  
M. Shakerzadeh ◽  
D. Baillargeat ◽  
...  
Author(s):  
E. A. Vorobyeva ◽  
I. V. Makarenko ◽  
A. V. Makunin ◽  
V. A. Trifonov ◽  
N. G. Chechenin

2016 ◽  
Vol 29 (4) ◽  
pp. 484-492 ◽  
Author(s):  
Jian Jiao ◽  
Yonghong Cui ◽  
Yu Xia

The thermal conductive filler/epoxy resin (EP) composites were prepared by a casting method. The effects of the multiwalled carbon nanotubes (MWCNTs), aluminum nitride (AlN) particles, and their compounds on the microstructure and thermal conductivity of the composites were investigated, in addition to the thermal properties. The results indicated that compounds of MWCNTs and AlN particles exhibited a remarkable synergistic effect to improve the thermal conductivity properties of the composites. The one-dimensional MWCNTs with superb thermal conductivity bridged the AlN particles to form an excellent network, which provides a faster and more effective pathway for phonon transport in the composites. The thermal conductivity of the 0.6 vol% MWCNTs/3.4 vol% AlN/EP composite is 0.53 W (m K)−1. In addition, the thermal conductivity of the MWCNTs/AlN/EP composites with 0.4 vol% MWCNTs and 3.4 vol% AlN is 0.48 W (m K)−1 (which is twice the value of 0.24 W (m K)−1 for the pure EP) which was much higher than the 0.4 vol% MWCNTs/EP composites (0.27 W (m K)−1) and the 3.4 vol% AlN/EP composites (0.28 W (m K)−1). Bruggeman’s equation is identified to fit quite well to the experimental results of the AlN/EP composites in the entire range of volume percentage of AlN; however, the MWCNTs/EP composites coincided better to the Russell equation. The volume resistivity of the MWCNTs/AlN/EP composites (approximately 1.8–2.6 × 1012 Ω m) exhibited only a slight compromise in comparison to the pure EP (2.5 × 1014 Ω m), which manifested the excellent insulation characteristic of these composites.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
C. Kostagiannakopoulou ◽  
E. Fiamegkou ◽  
G. Sotiriadis ◽  
V. Kostopoulos

The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs) and graphite nanoplatelets (GNPs) on thermal conductivity (TC) of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs). Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.


Sign in / Sign up

Export Citation Format

Share Document