Effective thermal conductivity of 3,5-diaminobenzoyl-functionalized multiwalled carbon nanotubes/epoxy composites

2013 ◽  
Vol 130 (5) ◽  
pp. 3184-3196 ◽  
Author(s):  
Uraiwan Pongsa ◽  
Anongnat Somwangthanaroj
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
C. Kostagiannakopoulou ◽  
E. Fiamegkou ◽  
G. Sotiriadis ◽  
V. Kostopoulos

The present study attempts to investigate the influence of multiwalled carbon nanotubes (MWCNTs) and graphite nanoplatelets (GNPs) on thermal conductivity (TC) of nanoreinforced polymers and nanomodified carbon fiber epoxy composites (CFRPs). Loading levels from 1 to 3% wt. of MWCNTs and from 1 to 15% wt. of GNPs were used. The results indicate that TC of nanofilled epoxy composites increased with the increase of GNP content. Quantitatively, 176% and 48% increase of TC were achieved in nanoreinforced polymers and nanomodified CFRPs, respectively, with the addition of 15% wt. GNPs into the epoxy matrix. Finally, micromechanical models were applied in order to predict analytically the TC of polymers and CFRPs. Lewis-Nielsen model with optimized parameters provides results very close to the experimental ones in the case of polymers. As far as the composites are concerned, the Hashin and Clayton models proved to be sufficiently accurate for the prediction at lower filler contents.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3325
Author(s):  
Paweł Smoleń ◽  
Tomasz Czujko ◽  
Zenon Komorek ◽  
Dominik Grochala ◽  
Anna Rutkowska ◽  
...  

This paper investigates the effect of multiwalled carbon nanotubes on the mechanical and electrical properties of epoxy resins and epoxy composites. The research concerns multiwalled carbon nanotubes obtained by catalytic chemical vapor deposition, subjected to purification processes and covalent functionalization by depositing functional groups on their surfaces. The study included the analysis of the change in DC resistivity, tensile strength, strain, and Young’s modulus with the addition of carbon nanotubes in the range of 0 to 2.5 wt.%. The effect of agents intended to increase the affinity of the nanomaterial to the polymer on the aforementioned properties was also investigated. The addition of functionalized multiwalled carbon nanotubes allowed us to obtain electrically conductive materials. For all materials, the percolation threshold was obtained with 1% addition of multiwalled carbon nanotubes, and filling the polymer with a higher content of carbon nanotubes increased its conductivity. The use of carbon nanotubes as polymer reinforcement allows higher values of tensile strength and a higher strain percentage to be achieved. In contrast, Young’s modulus values did not increase significantly, and higher nanofiller percentages resulted in a drastic decrease in the values of the abovementioned properties.


Sign in / Sign up

Export Citation Format

Share Document