aluminum nitride
Recently Published Documents


TOTAL DOCUMENTS

3055
(FIVE YEARS 438)

H-INDEX

85
(FIVE YEARS 10)

Author(s):  
Rebecca J. O'Toole ◽  
Chanel Hill ◽  
Peter J. Buur ◽  
Christopher J. Bartel ◽  
Christopher J. Gump ◽  
...  
Keyword(s):  

2022 ◽  
Vol 64 (1) ◽  
pp. 117
Author(s):  
А.А. Корякин ◽  
С.А. Кукушкин ◽  
А.В. Осипов ◽  
Ш.Ш. Шарофидинов

The nucleation mechanism of aluminum nitride films grown by the method of hydride vapor phase epitaxy on hybrid substrates 3C-SiC/Si(111) is theoretically analyzed. The temperature regions and vapor pressure regions of components are determined in which the island growth mechanism and the layer-by-layer growth mechanism are realized. The theoretical conclusions are compared with the experimental data. The morphology of aluminum nitride film on 3C-SiC/Si(111) at the initial growth stage is investigated by the method of scanning electron microscopy. The methods of controlling the change of the growth mechanism from the island growth to the layer-by-layer growth are proposed.


Surface ◽  
2021 ◽  
Vol 13(28) ◽  
pp. 175-181
Author(s):  
V. A. Petrova ◽  
◽  
V. V. Garbuz ◽  
V. B. Muratov ◽  
M. V. Karpets ◽  
...  

Boron carbide (BC, B15-xCx B4C) has a unique combination of properties. This makes it a material for priority applications for a wide range of engineering solutions. The high melting point and heat resistance of the compound contribute to its use in refractory conditions. Due to its extreme abrasion resistance, B4C is used as an abrasive powder and coating. Due to its high hardness and low density, B15-xCx has ballistic characteristics. It is usually used in nuclear programs as an absorbent of neutron radiation Boron carbide ceramics (B15-xCx or BC) may lose strength and toughness due to the amorphization effect under high shear stresses. Aluminum dodecaboride AlB12 or B12Al, as well as boron carbide B12 [(CCC) x (CBC) 1-x] have common structural units B12 family of boron-icosahedral structures. The bond between icosahedrons is mainly due to atoms (Al, Si, O) or chains (CMC), where M is Al, Si, B, C. Doping BC powder with a small amount of AlB12, in cases of shock-shear stress, triggers the mechanism of "micro-cracking". Micro cracks and pores are formed in ceramics. The breakdown voltage decreases. AlB12 synthesis is associated with known difficulties. On the other hand. The production of metal-ceramic materials for several decades is associated with the interaction of liquid aluminum and boron nitride. The calculation of this reaction shows that it is exothermic. Avoiding oxidation in vacuum, the reaction occurs through the formation of aluminum nitride and aluminum dodeca-boride. In contrast to the liquid state, the process continues until the end, at conditional temperatures of evaporation of aluminum with slight changes in vacuum. The reaction product is a mixture of nanosized AlN/AlB12 powders with a weight ratio of 3/1 ready for baking without grinding. The acid-base properties of the nanosized powder mixture AlN + AlB12, the products of the interaction BN + Al in vacuum, which are used optionally, emit separate in pure phases of aluminum nitride and aluminum dodeca-boride. The yield of AlB12 is ~ 25%, boron reaches ~ 100%. The average particle size of the AlB12 powders according to TEM and ACS X-rays (area of coherent X-rays scattering), L (nm) is LTEM=110-150nm, LACS=51-70nm. The average specific surface area of the powder according to BET, TEM and ACS, SBET.m2/g=21,0-15,0; STEM.m2/g=21,4-15,4; SACS.m2/g=46,1-33,6; (at 1460 and 1640K, respectively).


2021 ◽  
Author(s):  
Giulio Terrasanta ◽  
Timo Sommer ◽  
Manuel Müller ◽  
Matthias Althammer ◽  
Rudolf Grosse ◽  
...  

Author(s):  
Edwin Gevorkyan ◽  
Volodymyr Nerubatskyi ◽  
Volodymyr Chyshkala ◽  
Yuriy Gutsalenko ◽  
Oksana Morozova

This paper considers features related to manufacturing the chromium oxide-based tool material. The process involved ultra-dispersed powders made of aluminum nitride. It has been established that the destruction of chromium oxide at high sintering temperatures is prevented through the reaction sintering of chromium oxide (Cr2O3) and aluminum nitride (AlN). It was established that the structure of the composite depends both on the temperature and the duration of hot pressing. Thermodynamic calculations of the interaction between Cr2O3 and AlN showed that this interaction begins at a temperature of 1,300 °C. In contrast to hot pressing in the air, no СrN and Сr2N compounds were formed in a vacuum. With increasing temperature, the content of Al2O3 in solid solution becomes maximum at a temperature of 1,700 °C in the case of hot pressing in the air while in vacuum the content of Al2O3 remains unchanged within the entire temperature range of 1,300–1,700 °C. When increasing the time of hot pressing to 30 minutes, the size of individual grains reaches 10 μm. It has been shown that in the sintering process involving Cr2O3 and AlN, the plasma-chemical synthesis produces the solid solution (Cr, Al)2O3 at the interphase boundary, which improves the mechanical properties of the material. The influence exerted on the quality of the machined surface of tempered hard steel when machining by the devised tool material based on chromium oxide with an optimal admixture of 15 wt % of ultra-dispersed aluminum nitride powder was investigated. It was determined that the quality of the machined hard steel surface improved compared to standard imported tool plates. It was established that the resulting tool material, in addition to relatively high strength and crack resistance, also demonstrates high thermal conductivity, which favorably affects the quality of the machined steel surface, given that lubricants and coolants are not used during the cutting process.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yinting Zhao ◽  
Danyang Fu ◽  
Qikun Wang ◽  
Jiali Huang ◽  
Dan Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document