functionalized multiwalled carbon nanotubes
Recently Published Documents


TOTAL DOCUMENTS

346
(FIVE YEARS 72)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 6 (1) ◽  
pp. 26
Author(s):  
Dhivakar Rajendran ◽  
Rajarajan Ramalingame ◽  
Anurag Adiraju ◽  
Hanen Nouri ◽  
Olfa Kanoun

Dispersion of carbon nanotubes (CNT) in solvents and/or polymers is essential to reach the full potential of the CNTs in nanocomposite materials. Dispersion of CNTs is especially challenging due to the van-der-Waals attraction forces between the CNTs, which let them tend to re-bundle and/or re-aggregate. This paper presents a brief analysis of the quality and stability of functionalized multiwalled carbon nanotubes (fMWCNT) dispersion on polar solvents. A comparative study of functionalized CNT dispersion in water, methyl, and alcohol-based organic solvents has been carried out and the dispersion has been characterized by UV-VIS spectroscopy, electrochemical characterization such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Visual analysis of the dispersion has been investigated for up to 14 days to assess the dispersion’s stability. Based on the material characterization, it was observed that the degree of affinity fMWCNT with -COOH group highly depends on the polarity of the solvent, where the higher the polarity, the better the interaction of fMWCNT with solvents.


2022 ◽  
Author(s):  
Yuanyuan Lu ◽  
Xiuting Li ◽  
Richard G Compton

We report the electrochemistry of amino-functionalized multiwalled carbon nanotubes (MWCNTs-NH2) in the pH range from 0.3 to 6.4 using quantitative cyclic voltammetry (CV) and single entity electrochemistry measurements, making comparison...


2021 ◽  
Vol 21 (11) ◽  
pp. 5673-5680
Author(s):  
Muthukrishnan Francklin Philips ◽  
Jothirathinam Thangarathinam ◽  
Jayakumar Princy ◽  
Cyril Arockiaraj Crispin Tina ◽  
Cyril Arockiaraj Crispin Tina ◽  
...  

The authors report the preparation of the nanocomposite comprising of vanadium pentoxide (V2O5) and selenium (Se) nanoparticles and functionalized multiwalled carbon nanotubes (MWCNTs) (V2O5@Se NPs/MWCNTs). Since Se NPs possesses extraordinary physicochemical properties including larger surface area with higher adsorption capacity, V2O5 NPs were adsorbed onto Se NPs surface through physisorption process (designated as V2O5@Se NPs). The nanocomposite synthesized hydrothermally was evaluated for its antimicrobial activity. The morphology and microstructure of the nanocomposite were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, respectively. Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy (UV-Vis) were employed to analyze the spectral properties of nanocomposite. The microbicidal efficacy of nanocomposite was tested against Gram-negative (G-)ZGram-positive (G+) bacteria and fungus. This is the first report on the synthesis of V2O5@Se NPs/MWCNTs nanocomposites by chemical method that showed microbicidal effect on micro-organisms. The thiol (-SH) units facilitates the enrichment of V2O5@Se NPs onto MWCNTs surface. Ultimately, it reflects on the significant antimicrobial activity of V2O5@Se NPs/MWCNTs.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3325
Author(s):  
Paweł Smoleń ◽  
Tomasz Czujko ◽  
Zenon Komorek ◽  
Dominik Grochala ◽  
Anna Rutkowska ◽  
...  

This paper investigates the effect of multiwalled carbon nanotubes on the mechanical and electrical properties of epoxy resins and epoxy composites. The research concerns multiwalled carbon nanotubes obtained by catalytic chemical vapor deposition, subjected to purification processes and covalent functionalization by depositing functional groups on their surfaces. The study included the analysis of the change in DC resistivity, tensile strength, strain, and Young’s modulus with the addition of carbon nanotubes in the range of 0 to 2.5 wt.%. The effect of agents intended to increase the affinity of the nanomaterial to the polymer on the aforementioned properties was also investigated. The addition of functionalized multiwalled carbon nanotubes allowed us to obtain electrically conductive materials. For all materials, the percolation threshold was obtained with 1% addition of multiwalled carbon nanotubes, and filling the polymer with a higher content of carbon nanotubes increased its conductivity. The use of carbon nanotubes as polymer reinforcement allows higher values of tensile strength and a higher strain percentage to be achieved. In contrast, Young’s modulus values did not increase significantly, and higher nanofiller percentages resulted in a drastic decrease in the values of the abovementioned properties.


Sign in / Sign up

Export Citation Format

Share Document