Experimental study on temperature profile in a branched tunnel fire under natural ventilation considering different fire locations

2021 ◽  
Vol 159 ◽  
pp. 106631
Author(s):  
Peng Lei ◽  
Changkun Chen ◽  
Yulun Zhang ◽  
Tong Xu ◽  
Huakai Sun
2019 ◽  
Vol 84 ◽  
pp. 177-188 ◽  
Author(s):  
Kai-Hong Wang ◽  
Jun-Min Chen ◽  
Zhong-Kuan Wang ◽  
Dong-Li Gao ◽  
Guo-Yuan Wang ◽  
...  

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262546
Author(s):  
Jianlong Zhao ◽  
Yanfeng Li ◽  
Junmei Li ◽  
Jiaxin Li

This study simulated a series of bifurcation tunnel fire scenarios using the numerical code to investigate the temperature profile of bifurcation tunnel fire under natural ventilation. The bifurcation tunnel fire scenarios considered three bifurcation angles (30°, 45°, and 60°) and six heat release rates (HRRs) (5, 10, 15, 20, 25, and 30 MW). According to the simulation results, the temperature profile with various HRRs and bifurcation angles was described. Furthermore, the effects of bifurcation angles and HRRs on the maximum temperature under the bifurcation tunnel ceiling and the temperature decay along the longitudinal direction of the branch were investigated. According to the theoretical analysis, two prediction models were proposed. These models can predict a bifurcation tunnel fire’s maximum temperature and longitudinal temperature decay in the branch. The results of this study could be valuable for modelling a bifurcation tunnel fire and benefit the fire engineering design of bifurcation tunnels.


Sign in / Sign up

Export Citation Format

Share Document