Ability of antibodies specific to the HIV-1 envelope glycoprotein to block the fusion inhibitor T20 in a cell–cell fusion assay

Immunobiology ◽  
2012 ◽  
Vol 217 (10) ◽  
pp. 943-950 ◽  
Author(s):  
Nadine Vincent ◽  
Etienne Malvoisin
2021 ◽  
Vol 19 ◽  
Author(s):  
Liang Xu ◽  
Zeye Han ◽  
Hongqian Ren

Background: Human immunodeficiency virus type-1 (HIV-1) infection is the reason for the epidemic of acquired immunodeficiency syndrome (AIDS). Developing HIV-1 fusion inhibitors gained increasing attention as they took effect in the early stage of HIV-1 infecting cells. DNA G-quadruplex-based inhibitors had been found to interact with HIV-1 envelope glycoprotein, showing anti–HIV-1 fusion activity. C-peptide derived molecules with Met-Thr terminal also showed potent anti-fusion activity, the Met-Thr dipeptide adopted a hook-like structure (termed MT hook) in the hydrophobic pocket to "anchor" inhibitors to the N-terminal heptad repeat (NHR) of HIV-1 envelope glycoprotein gp41. Objective: Our work was to conjugate MT hooks to the 5'-terminal ends of DNA quadruplex-based inhibitor and demonstrate its biophysical characterization and anti–HIV-1 fusion activity. Methods: A 6-aminohexanol phosphonamidite was utilized in solid synthesis for the conjunction of oligodeoxynucleotide and MT dipeptide. Hydrophobic groups were introduced by a nucleoside analogue from the base site. Circular dichroism spectrum and native polyacrylamide gel electrophoresis were used to confirm the helix formation. A cell-cell fusion assay was carried out to test the anti-fusion activity. Results: The conjugate G1 showed improved anti-cell-cell fusion activity than quadruplex without MT hook. The MT hook did not affect the oligodeoxynucleotide (ODN) G-quadruplex assembly. It was also proved that G1 could effectively interfere with endogenous 6-helical bundle (6HB) formation between the N-terminal heptad repeat N36 (NHR) and the C-terminal heptad repeat C34 (CHR) during virus fusion course. Conclusion: In this work, conjugate of DNA-oligopeptide were successfully synthesized. The conjugation of MT hook did improve the anti-fusion activity of DNA G-quadruplex-based inhibitors. Our results can add information regarding on structure-activity relationships of DNA helix-based inhibitors and provide a reference for the follow-up experimental studies.


2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Xiaohui Ding ◽  
Xiujuan Zhang ◽  
Huihui Chong ◽  
Yuanmei Zhu ◽  
Huamian Wei ◽  
...  

ABSTRACT The peptide drug enfuvirtide (T20) is the only viral fusion inhibitor used in combination therapy for HIV-1 infection, but it has relatively low antiviral activity and easily induces drug resistance. Emerging studies demonstrate that lipopeptide-based fusion inhibitors, such as LP-11 and LP-19, which mainly target the gp41 pocket site, have greatly improved antiviral potency and in vivo stability. In this study, we focused on developing a T20-based lipopeptide inhibitor that lacks pocket-binding sequence and targets a different site. First, the C-terminal tryptophan-rich motif (TRM) of T20 was verified to be essential for its target binding and inhibition; then, a novel lipopeptide, termed LP-40, was created by replacing the TRM with a fatty acid group. LP-40 showed markedly enhanced binding affinity for the target site and dramatically increased inhibitory activity on HIV-1 membrane fusion, entry, and infection. Unlike LP-11 and LP-19, which required a flexible linker between the peptide sequence and the lipid moiety, addition of a linker to LP-40 sharply reduced its potency, implying different binding modes with the extended N-terminal helices of gp41. Also, interestingly, LP-40 showed more potent activity than LP-11 in inhibiting HIV-1 Env-mediated cell-cell fusion while it was less active than LP-11 in inhibiting pseudovirus entry, and the two inhibitors displayed synergistic antiviral effects. The crystal structure of LP-40 in complex with a target peptide revealed their key binding residues and motifs. Combined, our studies have not only provided a potent HIV-1 fusion inhibitor, but also revealed new insights into the mechanisms of viral inhibition. IMPORTANCE T20 is the only membrane fusion inhibitor available for treatment of viral infection; however, T20 requires high doses and has a low genetic barrier for resistance, and its inhibitory mechanism and structural basis remain unclear. Here, we report the design of LP-40, a T20-based lipopeptide inhibitor that has greatly improved anti-HIV activity and is a more potent inhibitor of cell-cell fusion than of cell-free virus infection. The binding modes of two classes of membrane-anchoring lipopeptides (LP-40 and LP-11) verify the current fusion model in which an extended prehairpin structure bridges the viral and cellular membranes, and their complementary effects suggest a vital strategy for combination therapy of HIV-1 infection. Moreover, our understanding of the mechanism of action of T20 and its derivatives benefits from the crystal structure of LP-40.


2010 ◽  
Vol 24 (11) ◽  
pp. 4196-4202 ◽  
Author(s):  
Yael Wexler‐Cohen ◽  
Avraham Ashkenazi ◽  
Mathias Viard ◽  
Robert Blumenthal ◽  
Yechiel Shai

Virology ◽  
2003 ◽  
Vol 307 (1) ◽  
pp. 22-36 ◽  
Author(s):  
Naiming Zhou ◽  
Xuejun Fan ◽  
Muhammad Mukhtar ◽  
Jianhua Fang ◽  
Charvi A Patel ◽  
...  
Keyword(s):  
Hiv 1 ◽  

2019 ◽  
Vol 294 (14) ◽  
pp. 5677-5687 ◽  
Author(s):  
Mizuki Yamamoto ◽  
Qingling Du ◽  
Jiping Song ◽  
Hongyun Wang ◽  
Aya Watanabe ◽  
...  

1999 ◽  
Vol 19 (4) ◽  
pp. 317-325 ◽  
Author(s):  
Anu Puri ◽  
Peter Hug ◽  
Kristine Jernigan ◽  
Patrick Rose ◽  
Robert Blumenthal

We have recently shown that addition of human erythrocyte glycosphingolipids (GSL) to non-human CD4+ or GSL-depleted human CD4+ cells rendered those cells susceptible to gp120-gp41-mediated cell fusion (Puri et al., BBRC, 1998). One GSL fraction (Fraction 3) isolated from human erythrocyte GSL mixture exhibited the highest recovery of fusion following incorporation into CD4+ non-human and GSL-depleted HeLa-CD4 cells (HeLa-CD4/GSL-). Structural analysis of Fraction 3 showed that this GSL had identical head group as the known GSL, Gal(α1→4)Gal(β1→4)Glc-Ceramide (Gb3) (Puri et al., PNAS, 1998). Here we report that presence of Gb3 in CD4+/CXCR4+ cells but not CD4+/CXCR4- cells allows fusion with HIV-1Lai-envelope glycoprotein expressing cells (TF228). Therefore, Gb3 functions in conjunction with HIV-1 co-receptor, CXCR4 to promote fusion. We propose that Gb3 functions by recruiting CD4 and/or CXCR4 at the fusion site through structurally specific interactions.


Virology ◽  
2002 ◽  
Vol 302 (1) ◽  
pp. 174-184 ◽  
Author(s):  
Ruben M. Markosyan ◽  
Xiuwen Ma ◽  
Min Lu ◽  
Fredric S. Cohen ◽  
Grigory B. Melikyan

Sign in / Sign up

Export Citation Format

Share Document