Tumor-necrosis factor-α induces retinoic acid-inducible gene-I in rheumatoid fibroblast-like synoviocytes

2009 ◽  
Vol 122 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Tadaatsu Imaizumi ◽  
Tomoh Matsumiya ◽  
Hidemi Yoshida ◽  
Takuya Naraoka ◽  
Ryoko Uesato ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ziqi Zou ◽  
Mengyao Li ◽  
Yunlian Zhou ◽  
Jiaying Li ◽  
Ting Pan ◽  
...  

A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.


2011 ◽  
Vol 23 (1) ◽  
pp. 225
Author(s):  
G. K. Deb ◽  
S. R. Dey ◽  
J. I. Bang ◽  
S. J. Cho ◽  
T. H. Kwon ◽  
...  

Cumulus cells (CC) play a critical role in oocyte maturation and fertilization via gap junctions. The oocyte itself maintains CC health to favour oocyte maturation via the secretion of paracrine growth factors. However, the antiapoptotic effects of oocyte-secreted factors follow a gradient from the site of the oocytes. Moreover, degrees of CC apoptosis are inversely related to the in vitro embryo development. Therefore, inhibition of CC apoptosis is important for efficient in vitro embryo development. The beneficial effects of retinoic acid (RA) during in vitro embryo production are well known in different species. However, the effect of RA on CC apoptosis is yet to be elucidated. All-trans RA and 9-cis RA are the natural components of retinoids, and all-trans RA are metabolized to 9-cis RA for physiological function. Therefore, the objective of the present study was to evaluate the effect of 9-cis RA on the mechanism for inhibition of apoptosis in CC. Slaughterhouse cumulus–oocyte complexes (COC) were matured in vitro in TCM-199-based in vitro maturation medium containing 0 or 5 mM 9-cis RA for 23 to 24 h (15 COC/100 μL droplet) at 38.5°C and 5% CO2 in air with maximum humidity. Following in vitro maturation, COC of a droplet were fixed in 4% paraformaldehyde for TUNEL staining using In Situ Cell Death Detection Kit (Roche, Budapest, Hungary). The proportion of apoptotic cells was estimated using Olympus Soft Imaging Solutions GmBH (Olympus, Münster, Germany). The COC of the remaining droplet were denuded. The CC were frozen and stored at –80°C. The CC of 3 different cultures were pooled, and total RNA was extracted using RNeasy Mini Kit (Qiagen, Valencia, CA, USA). Total RNA was reverse transcribed into cDNA using Omniscript Reverse Transcription kit (Qiagen). Relative expression of candidate genes was quantified using SYBER green real-time PCR with ΔΔ CT method. The expression was normalized against β-actin, glyceraldehyde 3-phosphate dehydrogenase, and 18s rRNA genes expression. The PCR efficiencies were calculated using relative calibration curves following 10-fold dilution series at 5 measuring points. Data were analysed for one-way ANOVA. The proportion of apoptotic cells was low in the 9-cis RA group (1.3 v. 3.3% of total CC; P < 0.05). Expression of tumor necrosis factor-α (11.1 v. 1.0; P < 0.001), caspase9 (2.0 v. 1.0; P < 0.01), and caspase3 (2.1 v. 1.0; P < 0.001) genes was down-regulated in the 9-cis RA group, whereas expression of Bcl2 gene was increased (1.0 v. 2.6 fold; P < 0.05). Moreover, the expression of c-fos gene of AP-1 pathway was down-regulated (1.9 v. 1 fold; P < 0.05) in the 9-cis RA group. Retinoic acid suppressed the expression of NF-kB, which in turn inhibits tumor necrosis factor-α-mediated caspase activity. However, the expression of NF-kB in CC was not affected by 9-cis RA (1.1 v. 1.0; P > 0.05). In conclusion, the present study indicated that 9-cis RA may inhibit cumulus cell apoptosis through suppression of AP-1 pathway. This work was partly supported by a scholarship from the BK21 program, the KRF (KRF-2008-211-F00011), the IPET (108068-03-1-SB010), and the KOSEF (10525010001-05N2501-00110).


1999 ◽  
Vol 148 (1-2) ◽  
pp. 163-170 ◽  
Author(s):  
F. Sigillo ◽  
F. Guillou ◽  
I. Fontaine ◽  
M. Benahmed ◽  
B. Le Magueresse-Battistoni

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Lianhua He ◽  
Huijie Luan ◽  
Juan He ◽  
Miaomiao Zhang ◽  
Qingxia Qin ◽  
...  

Abstract Background Rheumatoid arthritis is a progressive and systemic autoimmune disease seriously compromises human health. Fibroblast like synoviocytes are the major effectors of proliferation and inflammation in rheumatoid arthritis synovial tissue. Shikonin has anti-inflammatory and immunomodulatory activities. But, its role on synovitis of rheumatoid arthritis is unknown. Methods The DBA/1 male mice were randomly divided into the following three groups (n = 6): (1) the normal control group of mice, (2) the CIA (collagen-induced arthritis) group in which mice suffered from arthritis induced by collagen, (3) the SKN (shikonin) group of mice which got arthritis and given intragastrically with shikonin 4 mg/kg per day continuously for 20 days,(4) the MTX (methotrexate) group of mice which got arthritis and orally administration with shikonin 0.5  mg/kg once two days continuously for 20 days. The therapeutic effect of shikonin on collagen induced arthritis mice was tested by arthritis incidence rate, arthritis score and inflammatory joint histopathology. The invasion, adhesion and migration of fibroblast like synoviocytes induced by tumor necrosis factor-α were applied to measure the anti-synovitis role of shikonin. The effect of shikonin on expression of interleukin-6, interleukin-1β and tumor necrosis factor-α was measured by enzyme linked immunosorbent assay. The interaction between shikonin and suppressor of cytokine signaling 1 was verified by molecular docking. The signaling pathways activated by shikonin were measured by western blot. Results Shikonin decreased the arthritis score and arthritis incidence, and inhibited inflammation of inflamed joints in collagen induced arthritis mice. And shikonin reduced the number of vimentin+cells in collagen induced arthritis mice inflamed joints. Meanwhile, shikonin suppressed tumor necrosis factor-α-induced invasion, adhesion and migration of fibroblast like synoviocytes and reduced the expression of interleukin-6, interleukin-1β and tumor necrosis factor-α. And we found that shikonin targeted suppressor of cytokine signaling 1. More interestingly, shikonin blocked the phosphorylation of Janus kinase 1/signal transducer andactivator of transcription 1/signal transducer andactivator of transcription 6 in synovial tissues and in fibroblast like synoviocytes. Conclusion Shikonin represents a promising new anti-rheumatoid arthritis drug candidate that has anti-synovitis effect in collagen induced arthritis mice and inhibits tumor necrosis factor-α-induced fibroblast like synoviocytes by targeting suppressor of cytokine signaling 1/ Janus kinase/signal transducer andactivator of transcription signaling pathway. These findings demonstrate that shikonin has anti-synovitis effect and has great potential to be a new drug for the treatment of rheumatoid arthritis.


Sign in / Sign up

Export Citation Format

Share Document