suppressor of cytokine signaling
Recently Published Documents


TOTAL DOCUMENTS

844
(FIVE YEARS 121)

H-INDEX

75
(FIVE YEARS 5)

2022 ◽  
pp. 104476
Author(s):  
Allysson Cramer ◽  
Izabela Galvão ◽  
Nathália Venturini de Sá ◽  
Paulo Gaio ◽  
Natália Fernanda de Melo Oliveira ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Ashraf Marzouk El Tantawi ◽  

PD-1 /PD-L1 is adoptive checkpoint mechanism, where PD-1 is an adopting its PD-L1 ligand activities by presence of specific helical kinase proteins in its compositions: _gamma common chains,_LNK” lymphocyte adaptor protein, _or SH2B adaptor _protein “tyrosine kinases, and _”SOCS” suppressor of cytokine signaling, that specified for controlling PD-1 and PD-L1 bindings activity through temporary resting the PD-L1 and consequently T-cells activities then transform incoming signals to exogenous processes in favor the of proper immune functions, But the permanent inhibition of PD-1 /PD-L1 binding is due to breaking down or inhibition in one or more of the adaptors helical proteins (lymphocyte adaptor protein, or SH2B) with the presence of SOCS” suppressor of cytokine signaling that will increase stability of binding without adopting and without activities, but cells survival can still exist through presence of tyrosine kinases , interferon stimulate kinases ,and gamma common.


2021 ◽  
Vol 8 ◽  
Author(s):  
Changjiu Li ◽  
Wenhao Zhang ◽  
Tiantian Fang ◽  
Ning Li ◽  
Yuwei Wang ◽  
...  

Background: Kidney renal clear cell carcinoma (KIRC) has become one of the most prevalent malignancies worldwide and remains a crucial cause of cancer-related morbidity and mortality. Aberrant activation of the JAK/STAT pathway acts as an important role in KIRC. The suppressor of cytokine signaling (SOCS) family members are the key negative regulators of the JAK/STAT pathway. SOCS family members have been verified to act as significant roles in regulating cellular responses to many cytokines and growth factors. However, whether the expression levels of SOCS affect the prognosis of patients with KIRC is still elusive.Methods: We first evaluated the expression of SOCS family genes in KIRC and determined the correlation between SOCS expression and different clinicopathological features. Then, we analyzed the genetic alterations, potential functions, transcription factor targets, and immune infiltration of SOCS family members based on the information available on public databases. Finally, we assessed the prognostic value of differentially expressed SOCS family members.Results: The expression levels of SOCS2, SOCS4, SOCS6, SOCS7, and CISH were downregulated in KIRC, and all SOCS genes were associated with clinicopathological features of patients with KIRC. SOCS family members have been predominantly related to protein binding, signaling adaptor activity, and JAK/STAT cascade. We found that STAT3, STAT6, and IRF1 are the key transcription factors that may be participated in the regulation of SOCS. We also found an association between the expression levels of SOCS and the immune infiltrates of KIRC. Finally, we have illuminated that SOCS1 and SOCS3 are risky genes, whereas SOCS2, SOCS4, SOCS6, SOCS7, and CISH are some of the protective genes for patients with KIRC; based on these, we have created a KIRC prognostic index for predicting the prognosis of patients of KIRC.Conclusion: Our study may contribute to further understanding the functions of SOCS genes in KIRC, which may help clinicians in selecting the appropriate drugs and predicting the outcomes for patients with KIRC.


2021 ◽  
Vol 144 ◽  
pp. 112262
Author(s):  
Lirui Dai ◽  
Zian Li ◽  
Yiran Tao ◽  
Wulong Liang ◽  
Weihua Hu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Dabin Kuang ◽  
Lichen Dong ◽  
Lingyun Liu ◽  
Meiling Zuo ◽  
Yuanlin Xie ◽  
...  

Endothelial inflammation and vascular damage are essential risk factors contributing to hypertension. Suppressor of cytokine signaling 3 (SOCS3) is involved in the regulation of multiple inflammatory pathways. A large number of studies have shown that the anti-inflammatory effect of SOCS3 in hypertension, obesity, and allergic reactions has brought more insights into the inhibition of inflammation. Therefore, we selected a tagSNP of SOCS3 (rs8064821) to investigate whether they are contributing to the risk of hypertension in the Chinese population. In total, 532 patients with hypertension and 569 healthy controls were enrolled for two central of China. SOCS3 rs8064821 C>A polymorphism was genotyped using TaqMan assay. SOCS3 rs8064821 CA genotype was associated with an increased risk of hypertension ( OR = 1.821 , 95 % CI = 1.276 -2.600, P = 0.001 ). Rs8064821 A allele was associated with higher SOCS3 mRNA level in PBMCs from healthy donors. SOCS3 rs8064821 C>A polymorphism may contribute to the risk of hypertension in the Chinese population by regulating the expression of SOCS3.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xi-Yuan Liu ◽  
Rui Lu ◽  
Jing Chen ◽  
Jie Wang ◽  
Hong-Mei Qian ◽  
...  

Retinal pigment epithelium (RPE) serves critical functions in maintaining retinal homeostasis. An important function of RPE is to degrade the photoreceptor outer segment fragments daily to maintain photoreceptor function and longevity throughout life. An impairment of RPE functions such as metabolic regulation leads to the development of age-related macular degeneration (AMD) and inherited retinal degenerative diseases. As substrate recognition subunit of a ubiquitin ligase complex, suppressor of cytokine signaling 2 (SOCS2) specifically binds to the substrates for ubiquitination and negatively regulates growth hormone signaling. Herein, we explore the role of SOCS2 in the metabolic regulation of autophagy in the RPE cells. SOCS2 knockout mice exhibited the irregular morphological deposits between the RPE and Bruch’s membrane. Both in vivo and in vitro experiments showed that RPE cells lacking SOCS2 displayed impaired autophagy, which could be recovered by re-expressing SOCS2. SOCS2 recognizes the ubiquitylated proteins and participates in the formation of autolysosome by binding with autophagy receptors and lysosome-associated membrane protein2 (LAMP-2), thereby regulating the phosphorylation of glycogen synthase kinase 3β (GSK3β) and mammalian target of rapamycin (mTOR) during the autophagy process. Our results imply that SOCS2 participates in ubiquitin-autophagy-lysosomal pathway and enhances autophagy by regulating GSK3β and mTOR. This study provides a potential therapeutic target for AMD.


Author(s):  
Lingbo Xu ◽  
Huiping Zhang ◽  
Yanhua Wang ◽  
Anning Yang ◽  
Xiaoyan Dong ◽  
...  

AbstractAtherosclerosis is a chronic inflammatory vascular disease, and inflammation plays a critical role in its formation and progression. Elevated serum homocysteine (Hcy) is an independent risk factor for atherosclerosis. Previous studies have shown that fatty acid binding protein 4 (FABP4) plays an important role in macrophage inflammation and lipid metabolism in atherosclerosis induced by Hcy. However, the underlying molecular mechanism of FABP4 in Hcy-induced macrophage inflammation remains unknown. In this study, we found that FABP4 activated the Janus kinase 2/signal transducer and activator of transcription 2 (JAK2/STAT2) pathway in macrophage inflammation induced by Hcy. Of note, we further observed that ras-related protein Rap-1a (Rap1a) induced the Tyr416 phosphorylation and membrane translocation of non-receptor tyrosine kinase (c-Src) to activate the JAK2/STAT2 pathway. In addition, the suppressor of cytokine signaling 1 (SOCS1)—a transcriptional target of signal transducer and activator of transcription (STATs) inhibited the JAK2/STAT2 pathway and Rap1a expression via a negative feedback loop. In summary, these results demonstrated that FABP4 promotes c-Src phosphorylation and membrane translocation via Rap1a to activate the JAK2/STAT2 pathway, contributing to Hcy-accelerated macrophage inflammation in ApoE−/− mice.


Sign in / Sign up

Export Citation Format

Share Document