scholarly journals Cell mediated innate responses of cattle and swine are diverse during foot-and-mouth disease virus (FMDV) infection: A unique landscape of innate immunity

2013 ◽  
Vol 152 (2) ◽  
pp. 135-143 ◽  
Author(s):  
Felix N. Toka ◽  
William T. Golde
2020 ◽  
Vol 11 ◽  
Author(s):  
Jiangling Peng ◽  
Jiamin Yi ◽  
Wenping Yang ◽  
Jingjing Ren ◽  
Yuan Wen ◽  
...  

2011 ◽  
Vol 73 (12) ◽  
pp. 1569-1572 ◽  
Author(s):  
Yongjie LIU ◽  
Keshan ZHANG ◽  
Haixue ZHENG ◽  
Youjun SHANG ◽  
Jianhong GUO ◽  
...  

2015 ◽  
Vol 160 (10) ◽  
pp. 2503-2516 ◽  
Author(s):  
Lela Kopliku ◽  
Anthony Relmy ◽  
Aurore Romey ◽  
Kamila Gorna ◽  
Stephan Zientara ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 727
Author(s):  
Zhang ◽  
Chen ◽  
Liu ◽  
Qi ◽  
Gao ◽  
...  

Tumor suppressor protein p53 (p53) is a master transcription factor that plays key roles in cell cycle arrest, apoptosis, senescence, and metabolism, as well as regulation of innate immunity during virus infection. In order to facilitate their replication and spreading, viruses have evolved to manipulate p53 function through different strategies, with some requiring active p53 while others demand reduction/inhibition of p53 activity. However, there are no clear-cut reports about the roles of p53 during the infection of foot-and-mouth disease virus (FMDV), the causative agent of a highly contagious foot-and-mouth disease (FMD) of cloven-hoofed animals. Here we showed that p53 level was dynamically regulated during FMDV infection, being degraded at the early infection stage but recovered to the basal level at the late stage. Cells depleted of p53 showed inhibited FMDV replication and enhanced expression of the immune-related genes, whereas overexpression of p53 didn’t affect the viral replication. Viral challenge assay with p53 knockout mice obtained similar results, with viral load decreased, histopathological changes alleviated, and lifespan extended in the p53 knockout mice. Together, these data demonstrate that basal level p53 is required for efficient FMDV replication by suppressing the innate immunity.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 167 ◽  
Author(s):  
Carolina Stenfeldt ◽  
Jonathan Arzt

The existence of a prolonged, subclinical phase of foot-and-mouth disease virus (FMDV) infection in cattle was first recognized in the 1950s. Since then, the FMDV carrier state has been a subject of controversy amongst scientists and policymakers. A fundamental conundrum remains in the discordance between the detection of infectious FMDV in carriers and the apparent lack of contagiousness to in-contact animals. Although substantial progress has been made in elucidating the causal mechanisms of persistent FMDV infection, there are still critical knowledge gaps that need to be addressed in order to elucidate, predict, prevent, and model the risks associated with the carrier state. This is further complicated by the occurrence of a distinct form of neoteric subclinical infection, which is indistinguishable from the carrier state in field scenarios, but may have substantially different epidemiological properties. This review summarizes the current state of knowledge of the FMDV carrier state and identifies specific areas of research in need of further attention. Findings from experimental investigations of FMDV pathogenesis are discussed in relation to experience gained from field studies of foot-and-mouth disease.


2013 ◽  
Vol 94 (12) ◽  
pp. 2636-2646 ◽  
Author(s):  
Rebecca Midgley ◽  
Katy Moffat ◽  
Stephen Berryman ◽  
Philippa Hawes ◽  
Jennifer Simpson ◽  
...  

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER–Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs.


Author(s):  
Jin’en Wu ◽  
Zhihui Zhang ◽  
Zhidong Teng ◽  
Sahibzada Waheed Abdullah ◽  
Shiqi Sun ◽  
...  

Endoplasmic reticulum (ER) stress-induced autophagy is closely associated with viral infection and propagation. However, the intrinsic link between ER stress, autophagy, and viral replication during foot-and-mouth disease virus (FMDV) infection is not fully elucidated. Our previous studies demonstrated that FMDV infection activated the ER stress-associated UPR of the PERK-eIF2a and ATF6 signaling pathway, whereas the IRE1a signaling was suppressed. We found that the activated-ATF6 pathway participated in FMDV-induced autophagy and FMDV replication, while the IRE1α pathway only affected FMDV replication. Further studies indicated that Sec62 was greatly reduced in the later stages of FMDV infection and blocked the activation of the autophagy-related IRE1α-JNK pathway. Moreover, it was also found that Sec62 promoted IRE1a phosphorylation and negatively regulated FMDV proliferation. Importantly, Sec62 may interact with LC3 to regulate ER stress and autophagy balance and eventually contribute to FMDV clearance via fusing with lysosomes. Altogether, these results suggest that Sec62 is a critical molecule in maintaining and recovering ER homeostasis by activating the IRE1α-JNK pathway and delivering autophagosome into the lysosome, thus providing new insights on FMDV-host interactions and novel antiviral therapies.


2018 ◽  
Vol 9 ◽  
Author(s):  
Gisselle N. Medina ◽  
Fayna Díaz-San Segundo ◽  
Carolina Stenfeldt ◽  
Jonathan Arzt ◽  
Teresa de los Santos

2013 ◽  
Vol 94 (7) ◽  
pp. 1517-1527 ◽  
Author(s):  
Julian Seago ◽  
Nicholas Juleff ◽  
Katy Moffat ◽  
Stephen Berryman ◽  
John M. Christie ◽  
...  

Foot-and-mouth disease virus (FMDV) is one of the most extensively studied animal pathogens because it remains a major threat to livestock economies worldwide. However, the dynamics of FMDV infection are still poorly understood. The application of reverse genetics provides the opportunity to generate molecular tools to further dissect the FMDV life cycle. Here, we have used reverse genetics to determine the capsid packaging limitations for a selected insertion site in the FMDV genome. We show that exogenous RNA up to a defined length can be stably introduced into the FMDV genome, whereas larger insertions are excised by recombination events. This led us to construct a recombinant FMDV expressing the fluorescent marker protein, termed iLOV. Characterization of infectious iLOV-FMDV showed the virus has a plaque morphology and rate of growth similar to the parental virus. In addition, we show that cells infected with iLOV-FMDV are easily differentiated by flow cytometry using the inherent fluorescence of iLOV and that cells infected with iLOV-FMDV can be monitored in real-time with fluorescence microscopy. iLOV-FMDV therefore offers a unique tool to characterize FMDV infection in vitro, and its applications for in vivo studies are discussed.


Sign in / Sign up

Export Citation Format

Share Document