scholarly journals Integral operators on fully measurable weighted grand Lebesgue spaces

2017 ◽  
Vol 28 (2) ◽  
pp. 516-526 ◽  
Author(s):  
Pankaj Jain ◽  
Monika Singh ◽  
Arun Pal Singh



2010 ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Stefan Samko ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras


Author(s):  
С.М. Умархаджиев

Получены достаточные и необходимые условия на ядро и грандизатор для ограниченности односторонних интегральных операторов с однородными ядрами в гранд-пространствах Лебега на~$\mathbb{R}_+$ и $\mathbb{R}^n$, а также получены двусторонние оценки гранд-норм таких операторов. Кроме того, в~случае радиального ядра получены двусторонние оценки для норм многомерных операторов в~терминах сферических средних и показано, что этот результат сильнее, чем неравенства для норм операторов с нерадиальным ядром.





Author(s):  
S.G. Samko ◽  
S.M. Umarkhadzhiev

The so called grand spaces nowadays are one of the main objects in the theory of function spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets $\Omega$ with finite measure $|\Omega|<\infty$, and by the authors in the case $|\Omega|=\infty$. The latter is based on introduction of the notion of grandizer. The idea of "grandization" was also applied in the context of Morrey spaces. In this paper we develop the idea of grandization to more general Morrey spaces $L^{p,q,w}(\mathbb{R}^n)$, known as Morrey type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of such spaces. The mixed grand space is defined by the norm $$ \sup_{\varepsilon,\delta} \varphi(\varepsilon,\delta)\sup_{x\in E} \left(\int\limits_{0}^{\infty}{w(r)^{q-\delta}}b(r)^{\frac{\delta}{q}} \left(\,\int\limits_{|x-y|<r}\big|f(y)\big|^{p-\varepsilon} a(y)^{\frac{\varepsilon}{p}}\,dy\right)^{\frac{q-\delta}{p-\varepsilon}} \frac{dr}{r}\right)^{\frac{1}{q-\varepsilon}} $$ with the use of two grandizers $a$ and $b$. In the case of grand spaces, partial with respect to the exponent $q$, we study the boundedness of some integral operators. The class of these operators contains, in particular, multidimensional versions of Hardy type and Hilbert operators.



2019 ◽  
Vol 489 (4) ◽  
pp. 344-346
Author(s):  
V. M. Kokilashvili

In this paper, the weighted grand Lebesgue spaces with mixed-norms are introduced and boundedness criteria in these spaces of strong maximal functions and Riesz transforms are presented.



2017 ◽  
Vol 102 (5-6) ◽  
pp. 710-721 ◽  
Author(s):  
S. M. Umarkhadzhiev




2016 ◽  
Vol 19 (3) ◽  
Author(s):  
Vakhtang Kokilashvili ◽  
Mieczysław Mastyło ◽  
Alexander Meskhi

AbstractThe boundedness of multi(sub)linear Hardy&ndash;Littlewood maximal, Calder&oacute;n&ndash;Zygmund and fractional integral operators defined on metric measure spaces is established in weighted grand Lebesgue spaces. In particular, we derive the one-weight inequality for maximal and singular integrals under the Muckenhoupt type conditions, weighted Sobolev type theorem and trace type inequality for fractional integrals.



Sign in / Sign up

Export Citation Format

Share Document