Optimal investment strategies and risk-sharing arrangements for a hybrid pension plan

2019 ◽  
Vol 89 ◽  
pp. 46-62 ◽  
Author(s):  
Suxin Wang ◽  
Yi Lu
Author(s):  
Danping Li ◽  
Junna BI ◽  
Mengcong Hu

This paper considers an alpha-robust optimal investment problem for a defined contribution (DC) pension plan with uncertainty about jump and diffusion risks in a mean-variance framework. Our model allows the pension manager to have different levels of ambiguity aversion, rather than only consider the extremely ambiguity-averse attitude. Moreover, in the DC pension plan, contributions are supposed to be a predetermined amount of money as premiums and the pension funds are allowed to be invested in a financial market which consists of a risk-free asset, and a risky asset satisfying a jump-diffusion process. Notice that a part of pension members could die during the accumulation phase, and their premiums should be withdrawn. Thus, we consider the return of premiums clauses by an actuarial method and assume that the surviving members will share the difference between the return and the accumulation equally. Taking account of the pension fund size and the volatility of the accumulation, a mean-variance criterion as the investment objective for the DC plan can be formulated. By applying a game theoretic framework, the equilibrium investment strategies and the corresponding equilibrium value functions can be obtained explicitly. Economic interpretations are given in the numerical simulation, which is presented to illustrate our results.


2016 ◽  
Vol 255 (1-2) ◽  
pp. 391-420 ◽  
Author(s):  
Boxiao Chen ◽  
Erica Klampfl ◽  
Margaret Strumolo ◽  
Yan Fu ◽  
Xiuli Chao ◽  
...  

1983 ◽  
Vol 40 (12) ◽  
pp. 2080-2091 ◽  
Author(s):  
Anthony T. Charles

A full analysis of optimal fisheries investment strategies must take into account high levels of uncertainty in future fishery returns, as well as irreversibility of investment in specialized, nonmalleable fishing fleets. A stochastic optimization model is analyzed using dynamic programming to determine optimal policy functions for both fleet investment and fish stock management within an uncertain environment. The resulting policies are qualitatively similar to those found in the corresponding deterministic case, but quantitative differences can be substantial. Simulation results show that optimal fleet capacity should be expected to fluctuate over a fairly wide range, induced by stochastic variations in the biomass. However, the performance of a linear-cost risk-neutral fishery is fairly insensitive to variations in investment and escapement policies around their optimum levels, so that economic optimization is "forgiving" within this context. A framework of balancing upside and downside investment risks is used here to explain the roles of several fishery parameters in relation to optimal investment under uncertainty. In particular, the intrinsic growth rate of the resource and the ratio of unit capital costs to unit operating costs are found to be key parameters in determining whether investment should be higher or lower under uncertainty.


2021 ◽  
Vol 12 (2) ◽  
pp. 566-603
Author(s):  
Pieter M. van Staden ◽  
Duy-Minh Dang ◽  
Peter A. Forsyth

Sign in / Sign up

Export Citation Format

Share Document