scholarly journals The optimal investment strategy of a DC pension plan under deposit loan spread and the Ornstein-Uhlenbeck process

Author(s):  
Xu Xiao
Author(s):  
Xiaoyi Zhang ◽  
Junyi Guo

In this paper we investigate the optimal investment strategy for a defined contribution (DC) pension plan during the decumulation phrase which is risk-averse and pays close attention to inflation risk. The plan aims to maximize the expected constant relative risk aversion (CRRA) utility from the terminal wealth by investing the wealth in a financial market consisting of an inflation-indexed bond, an ordinary zero coupon bond and a risk-free asset. We derive the optimal investment strategy in closed-form using the dynamic programming approach by solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation. Our theoretical and numerical results reveal that under some rational assumptions, an inflation-indexed bond do has significant advantage to hedge inflation risk.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1756
Author(s):  
Yang Wang ◽  
Xiao Xu ◽  
Jizhou Zhang

This paper is concerned with the optimal investment strategy for a defined contribution (DC) pension plan. We assumed that the financial market consists of a risk-free asset and a risky asset, where the risky asset is subject to the Ornstein–Uhlenbeck (O-U) process, and stochastic income and inflation risk were also considered in the model. We firstly derived the Hamilton–Jacobi–Bellman (HJB) equation through the stochastic control method. Secondly, under the logarithmic utility function, the closed-form solution of optimal asset allocation was obtained by using the Legendre transform method. Finally, we give several numerical examples and a financial analysis.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Pei Wang ◽  
Ling Zhang ◽  
Zhongfei Li

<p style='text-indent:20px;'>This paper investigates an optimal investment problem for a defined contribution pension plan member who receives a stochastic salary, and considers inflation risk and stock return predictability. The member aims to maximize the expected power utility from her terminal real wealth by investing her pension account wealth in a financial market consisting of a risk-free asset, an inflation-indexed bond and a stock. The expected excess return on the stock can be predicted by both an observable predictor and an unobservable predictor, and the member has to estimate the unobservable predictor by learning the history information. By using the filtering techniques and dynamic programming approach, the closed-form optimal investment strategy and the corresponding value function are derived. Finally, with the help of numerical analysis, we explore the impact of model parameters on the optimal investment strategy, and analyze the welfare benefits from leaning and using inflation-indexed bond to hedge the stock return predictors.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Aimin Song ◽  
Peimin Chen

With the global outbreak of new coronavirus pneumonia, more and more countries have entered the state of sealing off cities. After the epidemic, with the shortage of some materials, the economy is very likely to enter the state of inflation. Thereby, it is necessary and urgent for us to reconsider investment problems involving inflation risk. In this paper, we mainly study the optimal investment strategy of two defined contribution (DC) pension managers with strategy interaction under inflation risk. The traditional portfolio literatures mainly focus on DC pension plan and try to maximize the expected utility of terminal nominal wealth. In this paper, we consider the more complicated situation that pension managers have, both concerns on relative wealth and relative risk aversion. Then, the objective function is constructed to satisfy these two concerns. The dynamic programming principle method is employed to solve the above problems, and a series of analytical solutions to this problem are obtained. Finally, some numerical examples are discussed for the economic implications to support our theoretical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Huiling Wu

This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1610
Author(s):  
Katia Colaneri ◽  
Alessandra Cretarola ◽  
Benedetta Salterini

In this paper, we study the optimal investment and reinsurance problem of an insurance company whose investment preferences are described via a forward dynamic exponential utility in a regime-switching market model. Financial and actuarial frameworks are dependent since stock prices and insurance claims vary according to a common factor given by a continuous time finite state Markov chain. We construct the value function and we prove that it is a forward dynamic utility. Then, we characterize the optimal investment strategy and the optimal proportional level of reinsurance. We also perform numerical experiments and provide sensitivity analyses with respect to some model parameters.


Sign in / Sign up

Export Citation Format

Share Document