On test collections for adaptive information retrieval

2008 ◽  
Vol 44 (6) ◽  
pp. 1879-1885 ◽  
Author(s):  
Ellen M. Voorhees
2017 ◽  
Vol 51 (2) ◽  
pp. 106-115
Author(s):  
Richard K. Belew

Author(s):  
Roberto Willrich ◽  
Rafael de Moura Speroni ◽  
Christopher Viana Lima ◽  
André Luiz de Oliveira Diaz ◽  
Sérgio Murilo Penedo

Author(s):  
Max Chevalier ◽  
Christine Julien ◽  
Chantal Soulé-Dupuy

Searching information can be realized thanks to specific tools called Information Retrieval Systems IRS (also called “search engines”). To provide more accurate results to users, most of such systems offer personalization features. To do this, each system models a user in order to adapt search results that will be displayed. In a multi-application context (e.g., when using several search engines for a unique query), personalization techniques can be considered as limited because the user model (also called profile) is incomplete since it does not exploit actions/queries coming from other search engines. So, sharing user models between several search engines is a challenge in order to provide more efficient personalization techniques. A semantic architecture for user profile interoperability is proposed to reach this goal. This architecture is also important because it can be used in many other contexts to share various resources models, for instance a document model, between applications. It is also ensuring the possibility for every system to keep its own representation of each resource while providing a solution to easily share it.


2020 ◽  
Vol 54 (2) ◽  
pp. 1-2
Author(s):  
Dan Li

The availability of test collections in Cranfield paradigm has significantly benefited the development of models, methods and tools in information retrieval. Such test collections typically consist of a set of topics, a document collection and a set of relevance assessments. Constructing these test collections requires effort of various perspectives such as topic selection, document selection, relevance assessment, and relevance label aggregation etc. The work in the thesis provides a fundamental way of constructing and utilizing test collections in information retrieval in an effective, efficient and reliable manner. To that end, we have focused on four aspects. We first study the document selection issue when building test collections. We devise an active sampling method for efficient large-scale evaluation [Li and Kanoulas, 2017]. Different from past sampling-based approaches, we account for the fact that some systems are of higher quality than others, and we design the sampling distribution to over-sample documents from these systems. At the same time, the estimated evaluation measures are unbiased, and assessments can be used to evaluate new, novel systems without introducing any systematic error. Then a natural further step is determining when to stop the document selection and assessment procedure. This is an important but understudied problem in the construction of test collections. We consider both the gain of identifying relevant documents and the cost of assessing documents as the optimization goals. We handle the problem under the continuous active learning framework by jointly training a ranking model to rank documents, and estimating the total number of relevant documents in the collection using a "greedy" sampling method [Li and Kanoulas, 2020]. The next stage of constructing a test collection is assessing relevance. We study how to denoise relevance assessments by aggregating from multiple crowd annotation sources to obtain high-quality relevance assessments. This helps to boost the quality of relevance assessments acquired in a crowdsourcing manner. We assume a Gaussian process prior on query-document pairs to model their correlation. The proposed model shows good performance in terms of interring true relevance labels. Besides, it allows predicting relevance labels for new tasks that has no crowd annotations, which is a new functionality of CrowdGP. Ablation studies demonstrate that the effectiveness is attributed to the modelling of task correlation based on the axillary information of tasks and the prior relevance information of documents to queries. After a test collection is constructed, it can be used to either evaluate retrieval systems or train a ranking model. We propose to use it to optimize the configuration of retrieval systems. We use Bayesian optimization approach to model the effect of a δ -step in the configuration space to the effectiveness of the retrieval system, by suggesting to use different similarity functions (covariance functions) for continuous and categorical values, and examine their ability to effectively and efficiently guide the search in the configuration space [Li and Kanoulas, 2018]. Beyond the algorithmic and empirical contributions, work done as part of this thesis also contributed to the research community as the CLEF Technology Assisted Reviews in Empirical Medicine Tracks in 2017, 2018, and 2019 [Kanoulas et al., 2017, 2018, 2019]. Awarded by: University of Amsterdam, Amsterdam, The Netherlands. Supervised by: Evangelos Kanoulas. Available at: https://dare.uva.nl/search?identifier=3438a2b6-9271-4f2c-add5-3c811cc48d42.


Author(s):  
Bich-Liên Doan ◽  
Jean-Paul Sansonnet

This chapter discusses using context in Information Retrieval systems and Intelligent Assistant Agents in order to improve the performance of these systems. The notion of context is introduced and the state of the art in Contextual Information Retrieval is presented which illustrates various categories of contexts that can be taken into account when solving user queries. In this framework, the authors focus on the issue of task-based context which takes into account the current activity the user is involved in when he puts a query. Finally they introduce promising research directions that promote the use of Intelligent Assistant Agents capable of symbolic reasoning about users’ tasks for supporting the query process.


Sign in / Sign up

Export Citation Format

Share Document