GoFast: Graph-based optimization for efficient and scalable query evaluation

2021 ◽  
Vol 99 ◽  
pp. 101738
Author(s):  
Ishaq Zouaghi ◽  
Amin Mesmoudi ◽  
Jorge Galicia ◽  
Ladjel Bellatreche ◽  
Taoufik Aguili
Keyword(s):  
Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 149
Author(s):  
Petros Zervoudakis ◽  
Haridimos Kondylakis ◽  
Nicolas Spyratos ◽  
Dimitris Plexousakis

HIFUN is a high-level query language for expressing analytic queries of big datasets, offering a clear separation between the conceptual layer, where analytic queries are defined independently of the nature and location of data, and the physical layer, where queries are evaluated. In this paper, we present a methodology based on the HIFUN language, and the corresponding algorithms for the incremental evaluation of continuous queries. In essence, our approach is able to process the most recent data batch by exploiting already computed information, without requiring the evaluation of the query over the complete dataset. We present the generic algorithm which we translated to both SQL and MapReduce using SPARK; it implements various query rewriting methods. We demonstrate the effectiveness of our approach in temrs of query answering efficiency. Finally, we show that by exploiting the formal query rewriting methods of HIFUN, we can further reduce the computational cost, adding another layer of query optimization to our implementation.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-28
Author(s):  
Yan Tang ◽  
Weilong Cui ◽  
Jianwen Su

A business process (workflow) is an assembly of tasks to accomplish a business goal. Real-world workflow models often demanded to change due to new laws and policies, changes in the environment, and so on. To understand the inner workings of a business process to facilitate changes, workflow logs have the potential to enable inspecting, monitoring, diagnosing, analyzing, and improving the design of a complex workflow. Querying workflow logs, however, is still mostly an ad hoc practice by workflow managers. In this article, we focus on the problem of querying workflow log concerning both control flow and dataflow properties. We develop a query language based on “incident patterns” to allow the user to directly query workflow logs instead of having to transform such queries into database operations. We provide the formal semantics and a query evaluation algorithm of our language. By deriving an accurate cost model, we develop an optimization mechanism to accelerate query evaluation. Our experiment results demonstrate the effectiveness of the optimization and achieves up to 50× speedup over an adaption of existing evaluation method.


Sign in / Sign up

Export Citation Format

Share Document