Coupled fractional-order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot

Author(s):  
Yuanlong Xie ◽  
Xiaolong Zhang ◽  
Wei Meng ◽  
Shiqi Zheng ◽  
Liquan Jiang ◽  
...  
Author(s):  
Kağan Koray Ayten ◽  
Muhammet Hüseyin Çiplak ◽  
Ahmet Dumlu

This article presents the speed and direction angle control of a wheeled mobile robot based on a fractional-order adaptive model-based PID-type sliding mode control technique. Taking into account the individual benefits of the fractional calculus and the adaptive model-based PID-type sliding mode control method, the fractional order and the adaptive model-based PID-type sliding mode control technique are combined and proposed as an effective controller for the first time in the literature for real-time control of the wheeled mobile robot under the external payload. In this proposed method, several critical issues are considered; first, a kinematic and dynamic model of the wheeled mobile robot is analysed considering the system’s uncertainties. Second, fractional-order calculus and the model-based PID-type sliding mode control is composed to realize the chattering-free control, accurate trajectory tracking response, finite time convergence and robustness for the wheeled mobile robot. Finally, an adaptive process is also employed to meet and overcome the unknown dynamics and uncertain parameters of the system, regardless of the previous information of the uncertainties. The experimental outcomes demonstrate that the proposed controller (fractional-order adaptive model-based PID-type sliding mode controller) delivers an accurate trajectory tracking performance, faster finite-time convergence as well as having a smaller speed error under the external payload when the adaptive model-based PID-type sliding mode control is compared.


Author(s):  
Majid Parvizian ◽  
Khosro Khandani

This article proposes a new [Formula: see text] sliding mode control strategy for stabilizing controller design for fractional-order Markovian jump systems. The suggested approach is based on the diffusive representation of fractional-order Markovian jump systems which transforms the fractional-order system into an integer-order one. Using a new Lyapunov–Krasovskii functional, the problem of [Formula: see text] sliding mode control of uncertain fractional-order Markovian jump systems with exogenous noise is investigated. We propose a sliding surface and prove its reachability. Moreover, the linear matrix inequality conditions for stochastic stability of the resultant sliding motion with a given [Formula: see text] disturbance attenuation level are derived. Eventually, the theoretical results are verified through a simulation example.


2021 ◽  
pp. 002029402110211
Author(s):  
Tao Chen ◽  
Damin Cao ◽  
Jiaxin Yuan ◽  
Hui Yang

This paper proposes an observer-based adaptive neural network backstepping sliding mode controller to ensure the stability of switched fractional order strict-feedback nonlinear systems in the presence of arbitrary switchings and unmeasured states. To avoid “explosion of complexity” and obtain fractional derivatives for virtual control functions continuously, the fractional order dynamic surface control (DSC) technology is introduced into the controller. An observer is used for states estimation of the fractional order systems. The sliding mode control technology is introduced to enhance robustness. The unknown nonlinear functions and uncertain disturbances are approximated by the radial basis function neural networks (RBFNNs). The stability of system is ensured by the constructed Lyapunov functions. The fractional adaptive laws are proposed to update uncertain parameters. The proposed controller can ensure convergence of the tracking error and all the states remain bounded in the closed-loop systems. Lastly, the feasibility of the proposed control method is proved by giving two examples.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document