optical tracking
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 150)

H-INDEX

34
(FIVE YEARS 5)

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Bing Zhang ◽  
Kang Nie ◽  
Xinglong Chen ◽  
Yao Mao

The electro-optical tracking system (ETS) on moving platforms is affected by the vibration of the moving carrier, the wind resistance torque in motion, the uncertainty of mechanisms and the nonlinear friction between frames and other disturbances, which may lead to the instability of the electro-optical tracking platform. Sliding mode control (SMC) has strong robustness to system disturbances and unknown dynamic external signals, which can enhance the disturbance suppression ability of ETSs. However, the strong robustness of SMC requires greater switching gain, which causes serious chattering. At the same time, the tracking accuracy of SMC has room for further improvement. Therefore, in order to solve the chattering problem of SMC and improve the tracking accuracy of SMC, an SMC controller based on internal model control (IMC) is proposed. Compared with traditional SMC, the proposed method can be used to suppress the strongest disturbance with the smallest switching gain, effectively solving the chattering problem of the SMC, while improving the tracking accuracy of the system. In addition, to reduce the adverse influence of sensor noise on the control effect, lifting wavelet threshold de-noising is introduced into the control structure to further improve the tracking accuracy of the system. The simulation and experimental results verify the superiority of the proposed control method.


2022 ◽  
Vol 12 (1) ◽  
pp. 471
Author(s):  
Sang Kuy Han ◽  
Keonwoo Kim ◽  
Yejoon Rim ◽  
Manhyung Han ◽  
Youngjeon Lee ◽  
...  

By virtue of their upright locomotion, similar to that of humans, motion analysis of non-human primates has been widely used in order to better understand musculoskeletal biomechanics and neuroscience problems. Given the difficulty of conducting a marker-based infrared optical tracking system for the behavior analysis of primates, a 2-dimensional (D) video analysis has been applied. Distinct from a conventional marker-based optical tracking system, a depth image sensor system provides 3-D information on movement without any skin markers. The specific aim of this study was to develop a novel algorithm to analyze the behavioral patterns of non-human primates in a home cage using a depth image sensor. The behavioral patterns of nine monkeys in their home cage, including sitting, standing, and pacing, were captured using a depth image sensor. Thereafter, these were analyzed by observers’ manual assessment and the newly written automated program. We confirmed that the measurement results from the observers’ manual assessments and the automated program with depth image analysis were statistically identical.


2022 ◽  
Vol 11 ◽  
Author(s):  
Mónica García-Sevilla ◽  
Rafael Moreta-Martinez ◽  
David García-Mato ◽  
Gema Arenas de Frutos ◽  
Santiago Ochandiano ◽  
...  

Adenoid Cystic Carcinoma is a rare and aggressive tumor representing less than 1% of head and neck cancers. This malignancy often arises from the minor salivary glands, being the palate its most common location. Surgical en-bloc resection with clear margins is the primary treatment. However, this location presents a limited line of sight and a high risk of injuries, making the surgical procedure challenging. In this context, technologies such as intraoperative navigation can become an effective tool, reducing morbidity and improving the safety and accuracy of the procedure. Although their use is extended in fields such as neurosurgery, their application in maxillofacial surgery has not been widely evidenced. One reason is the need to rigidly fixate a navigation reference to the patient, which often entails an invasive setup. In this work, we studied three alternative and less invasive setups using optical tracking, 3D printing and augmented reality. We evaluated their precision in a patient-specific phantom, obtaining errors below 1 mm. The optimum setup was finally applied in a clinical case, where the navigation software was used to guide the tumor resection. Points were collected along the surgical margins after resection and compared with the real ones identified in the postoperative CT. Distances of less than 2 mm were obtained in 90% of the samples. Moreover, the navigation provided confidence to the surgeons, who could then undertake a less invasive and more conservative approach. The postoperative CT scans showed adequate resection margins and confirmed that the patient is free of disease after two years of follow-up.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeffrey Z. Nie ◽  
James W. Nie ◽  
Na-Teng Hung ◽  
R. James Cotton ◽  
Marc W. Slutzky

AbstractArm movement kinematics may provide a more sensitive way to assess neurorehabilitation outcomes than existing metrics. However, measuring arm kinematics in people with stroke can be challenging for traditional optical tracking systems due to non-ideal environments, expense, and difficulty performing required calibration. Here, we present two open-source methods, one using inertial measurement units (IMUs) and another using virtual reality (Vive) sensors, for accurate measurements of wrist position with respect to the shoulder during reaching movements in people with stroke. We assessed the accuracy of each method during a 3D reaching task. We also demonstrated each method’s ability to track two metrics derived from kinematics-sweep area and smoothness-in people with chronic stroke. We computed correlation coefficients between the kinematics estimated by each method when appropriate. Compared to a traditional optical tracking system, both methods accurately tracked the wrist during reaching, with mean signed errors of 0.09 ± 1.81 cm and 0.48 ± 1.58 cm for the IMUs and Vive, respectively. Furthermore, both methods’ estimated kinematics were highly correlated with each other (p < 0.01). By using relatively inexpensive wearable sensors, these methods may be useful for developing kinematic metrics to evaluate stroke rehabilitation outcomes in both laboratory and clinical environments.


2021 ◽  
pp. 131514
Author(s):  
Sulafa B. H. Hashim ◽  
Haroon Elrasheid Tahir ◽  
Li Lui ◽  
Junjun Zhang ◽  
Xiaodong Zhai ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6843
Author(s):  
José C. Ponce-Bordón ◽  
Jesús Díaz-García ◽  
Miguel A. López-Gajardo ◽  
David Lobo-Triviño ◽  
Roberto López del López del Campo ◽  
...  

The aim of the present study was to analyze the influence of time winning and time losing on position-specific match physical demands with and without ball possession in the top Spanish professional soccer league. All matches played in the First Spanish soccer league over four consecutive seasons (from 2015/16 to 2018/19) were recorded using an optical tracking system (i.e., ChyronHego), and the data were analyzed via Mediacoach®. Total distance (TD), and TD > 21 km·h−1 covered with and without ball possession were analyzed using a Linear Mixed Model, taking into account the contextual variables time winning and losing. Results showed that TD and TD > 21 km·h−1 covered by central midfielders (0.01 and 0.005 m/min, respectively), wide midfielders (0.02 and 0.01 m/min, respectively), and forwards (0.03 and 0.02 m/min, respectively) significantly increased while winning (p < 0.05). By contrast, TD and TD > 21 km·h−1 covered by central defenders (0.01 and 0.008 m/min, respectively) and wide defenders (0.06 and 0.008 m/min, respectively) significantly increased while losing (p < 0.05). In addition, for each minute that teams were winning, total distance with ball possession (TDWP) decreased, while, for each minute that teams were losing, TDWP increased. Instead, TDWP > 21 km·h−1 obtained opposite results. Total distance without ball possession increased when teams were winning, and decreased when teams were losing. Therefore, the evolution of scoreline significantly influences tactical–technical and physical demands on soccer matches.


Author(s):  
I. Graul ◽  
I. Marintschev ◽  
A. Pizanis ◽  
S. C. Herath ◽  
T. Pohlemann ◽  
...  

Abstract Background Various plate shapes and implant configurations are used for stabilization of acetabulum fractures via anterior approaches. Little is known about the biomechanical stability of a two-dimensionally shaped “conventional” plate (“J-Plate”—JP) in comparison to three-dimensionally shaped plate configurations (3DP). In addition, the augmentary effect of an infra-acetabular lag-screw (IACS) fixation for anterior column and posterior hemi-transverse acetabulum fractures has not been clarified in comparison of JP and 3DP constructs. This study analyzed the difference between the biomechanical stability of JP compared to 3DP and the role of an IACS in a standardized acetabular fracture model in a single-leg stance loading configuration. Methods In an artificial bone substitute pelvis model (Synbone© Malans, Switzerland), a typical and standardized fracture pattern (anterior column and posterior hemi-transverse) was created with osteotomy jigs. After anatomic reduction the stabilization was performed using JP or 3DP. Eight pelvises per group were axially loaded in a single-leg stance model up to 400 N. After the load cycle, an additional infra-acetabular screw was placed and the measurement repeated. Fragment displacement was recorded by an optical tracking system (Optitrack Prime 13®, Corvallis, USA). Results In the pure placement, 3DP provided significantly superior stability when compared to JP. Augmentation of JP by IACS increased the stability significantly, up to the level of 3DP alone, whereas augmentation of the 3DP did not result in further increase of overall stability. Conclusion The anatomically shaped plate alone provides a superior biomechanical stability in fixation of an anterior column and posterior hemi-transverse fracture model. In a JP fixation the augmentation by IACS provides similar strength as the anatomically shaped 3DP. By use of the anatomically shaped 3DP the need of a clinically risky application of IACS might be avoidable. Level of evidence IV, Experimental study.


2021 ◽  
Author(s):  
Wei Tian ◽  
Zhan Shi ◽  
Zuchang Li ◽  
Mingxing Fan ◽  
Qilong Wang ◽  
...  

Abstract Objective To explore navigation-related factors interfering with accuracy of robot-assisted surgery. Methods We made a measurement model to test the accuracy of the TianJi Robot system when performing the stimulated screw placement procedure. The three-coordinate machine was used to measure the deviation between the actual position and the planned position. We designed corresponding experiments to explore the effects of different navigation-related factors on the screw placement accuracy. The deviations were measured at different distance (ranging from 1.2 m to 2.2 m) between the navigation optical stereo camera and the tracker and each distance was measured 50 times. The distance between the optical camera and the patient tracker was set at 1.4 m and the deviations were measured at different angles between the camera and the robot tracker, each angle was measured more than 25 times. Data was donated with mean and standard deviation. The line charts were employed to describe the changes of deviations over one clinical factor including distance and angle. Results Within the available scope of navigation optical system (1.2 m-2.2 m), the deviation increased with the distance (χ2=479.107, P<0.001). The robotic system accuracy was high and stable (mean deviation 0.332 mm ± 0.067 mm) when the relative angle between the optical camera and the tracker less than 40 degrees. Conclusions Accuracy of robot system was affected by the relative distance and angle between the optical camera and the tracker. When placing and adjusting the optical tracking devices, surgeons should set the relative distance between the optical camera and the patient tracker as 1.4 m- 1.5 m and the relative angle less than 40 degrees.


Sign in / Sign up

Export Citation Format

Share Document