scholarly journals Constitutive activation of sphingosine 1-phosphate receptors at the trans-Golgi network is required for surface transport carrier formation

iScience ◽  
2021 ◽  
pp. 103351
Author(s):  
Taro Okada ◽  
Susumu Nishida ◽  
Lifang Zhang ◽  
Nesma Nabil Ibrahim Mohamed ◽  
Tianyou Wang ◽  
...  
1994 ◽  
Vol 107 (4) ◽  
pp. 933-943 ◽  
Author(s):  
M. Wagner ◽  
A.K. Rajasekaran ◽  
D.K. Hanzel ◽  
S. Mayor ◽  
E. Rodriguez-Boulan

The trans-Golgi network (TGN) of MDCK cells is exquisitely sensitive to the fungal metabolite brefeldin A (BFA), in contrast to the refractory Golgi stack of these cells. At a concentration of 1 microgram/ml, BFA promoted extensive tubulation of the TGN while the medical Golgi marker alpha-mannosidase II was not affected. Tubules emerging minutes after addition of the drug contained both the apical marker influenza hemagglutinin (HA), previously accumulated at 20 degrees C, and the fusion protein interleukin receptor/TGN38 (TGG), a TGN marker that recycles basolaterally, indicating that, in contrast to TGN vesicles, TGN-derived tubules cannot sort apical and basolateral proteins. After 60 minutes treatment with BFA, HA and TGG tubules formed extensive networks widely spread throughout the cell, different from the focused centrosomal localization previously described in non-polarized cells. The TGG network partially codistributed with an early endosomal tubular network loaded with transferrin, suggesting that the TGG and endosomal networks had fused or that TGG had entered the endosomal network via surface recycling and endocytosis. The extensive structural alterations of the TGN were accompanied by functional disruptions, such as the extensive mis-sorting of influenza HA, and by the release of the TGN marker gamma-adaptin. Our results suggest the involvement of BFA-sensitive adaptor proteins in TGN-->surface transport.


2007 ◽  
Vol 179 (6) ◽  
pp. 1123-1131 ◽  
Author(s):  
Carine Bossard ◽  
Damien Bresson ◽  
Roman S. Polishchuk ◽  
Vivek Malhotra

Protein kinase D (PKD) is recruited to the trans-Golgi network (TGN) through interaction with diacylglycerol (DAG) and is required for the biogenesis of TGN to cell surface transport carriers. We now provide definitive evidence that PKD has a function in membrane fission. PKD depletion by siRNA inhibits trafficking from the TGN, whereas expression of a constitutively active PKD converts TGN into small vesicles. These findings demonstrate that PKD regulates membrane fission and this activity is used to control the size of transport carriers, and to prevent uncontrolled vesiculation of TGN during protein transport.


Sign in / Sign up

Export Citation Format

Share Document