scholarly journals P2X7 RECEPTOR IS ESSENTIAL FOR CROSS-DRESSING OF BONE MARROW-DERIVED DENDRITIC CELLS

iScience ◽  
2021 ◽  
pp. 103520
Author(s):  
Carlos Barrera-Avalos ◽  
Pedro Briceño ◽  
Daniel Valdés ◽  
Mónica Imarai ◽  
Elías Leiva-Salcedo ◽  
...  
2013 ◽  
Vol 432 (3) ◽  
pp. 406-411 ◽  
Author(s):  
Hayato Sakaki ◽  
Takuya Fujiwaki ◽  
Mitsutoshi Tsukimoto ◽  
Ayumi Kawano ◽  
Hitoshi Harada ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hannah L. Luz ◽  
Martin Reichel ◽  
Robert J. Unwin ◽  
Kerim Mutig ◽  
Ana C. Najenson ◽  
...  

AbstractOxalate crystal-induced renal inflammation is associated with progressive kidney failure due to activation of the NLRP3/CASP-1 inflammasome. It has been suggested previously that purinergic P2X7 receptor signaling is critical for crystal-induced inflammasome activation and renal injury. Therefore, we investigated the role of the P2X7 receptor in response to crystal-induced cytokine release, inflammation, and kidney failure using in vitro and in vivo models. Dendritic cells and macrophages derived from murine bone marrow and human peripheral blood mononucleated cells stimulated with calcium-oxalate crystals, monosodium urate crystals, or ATP lead to the robust release of interleukin-1beta (IL-1ß). Treatment with the P2X7 inhibitor A740003 or the depletion of ATP by apyrase selectively abrogated ATP-induced, but not oxalate and urate crystal-induced IL-1ß release. In line with this finding, dendritic cells derived from bone marrow (BMDCs) from P2X7−/− mice released reduced amounts of IL-1ß following stimulation with ATP, while oxalate and urate crystal-induced IL-1ß release was unaffected. In sharp contrast, BMDCs from Casp1−/− mice exhibited reduced IL-1ß release following either of the three stimulants. In addition, P2X7−/− mice demonstrated similar degrees of crystal deposition, tubular damage and inflammation when compared with WT mice. In line with these findings, increases in plasma creatinine were no different between WT and P2X7−/− mice. In contrast to previous reports, our results indicate that P2X7 receptor is not required for crystal-induced CKD and it is unlikely to be a suitable therapeutic target for crystal-induced progressive kidney disease.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A574-A574
Author(s):  
Ellen Duong ◽  
Timothy Fessenden ◽  
Arjun Bhutkar ◽  
Stefani Spranger

BackgroundCytotoxic (CD8+) T-cells are required for tumor eradication and durable anti-tumor immunity.1 The induction of tumor-reactive CD8+ T-cells is predominately attributed to a subset of dendritic cells (DC) called Batf3-driven DC1, given their robust ability to cross-present antigens for T-cell priming and their role in effector T-cell recruitment.2–4 Presence of the DC1 signature in tumors correlates with improved survival and response to immunotherapies.5–7 Yet, most tumors with a DC1 infiltrate still progress, suggesting that while DC1 can initiate tumor-reactive CD8+ T-cell responses, they are unable to sustain them. Therefore, there is a critical need to identify and engage additional stimulatory DC subsets to strengthen anti-tumor immunity and boost immunotherapy responses.MethodsTo identify DC subsets that drive poly-functional CD8+ T-cell responses, we compared the DC infiltrate of a spontaneously regressing tumor with a progressing tumor. Multicolor flow immunophenotyping and single-cell RNA-sequencing were used to profile the DC compartment of both tumors. IFNγ-ELISpot was performed on splenocytes to assess for systemic tumor-reactive T-cell responses. Sorted DC subsets from tumors were co-cultured with TCR-transgenic T-cells ex vivo to evaluate their stimulatory capacity. Cross-dressing (in vivo/ex vivo) was assayed by staining for transfer of tumor-derived H-2b MHC complexes to Balb/c DC, which express the H-2d haplotype. Protective systemic immunity was assayed via contralateral flank tumor outgrowth experiments.ResultsRegressor tumors were infiltrated with more cross-presenting DC1 than progressor tumors. However, tumor-reactive CD8+ T-cell responses and tumor control were preserved in Batf3-/- mice lacking DC1, indicating that anti-tumor immune responses could be induced independent of DC1. Through functional assays, we established that anti-tumor immunity against regressor tumors required CD11c+ DC and cGAS/STING-independent type-I-interferon-sensing. Single-cell RNA-sequencing of the immune infiltrate of regressor tumors revealed a novel CD11b+ DC subset expressing an interferon-stimulated gene signature (ISG+ DC). Flow studies demonstrated that ISG+ DC were more enriched in regressor tumors than progressor tumors. We showed that ISG+ DC could activate CD8+ T-cells by cross-dressing with tumor-derived peptide-MHC complexes, thereby bypassing the requirement for cross-presentation to initiate CD8+ T-cell-driven immunity. ISG+ DC highly expressed cytosolic dsRNA sensors (RIG-I/MDA5) and could be therapeutically harnessed by exogenous addition of a dsRNA analog to drive protective CD8+ T-cell responses in DC1-deficient mice.ConclusionsThe DC infiltrate in tumors can dictate the strength of anti-tumor immunity. Harnessing multiple stimulatory DC subsets, such as cross-presenting DC1 and cross-dressing ISG+ DC, provides a therapeutic opportunity to enhance anti-tumor immunity and increase immunotherapy responses.ReferencesFridman WH, et al. The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer 2012;12(4): p. 298–306.Hildner K, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008;322(5904):p. 1097–100.Spranger S, et al. Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017;31(5):p. 711–723.e4.Roberts, EW, et al., Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 2016;30(2): p. 324–336.Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014;26(5): p. 638–52.Salmon H., et al., Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 2016. 44(4): p. 924–38.Sánchez-Paulete AR, et al., Cancer immunotherapy with immunomodulatory anti-CD137 and Anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov, 2016;6(1):p. 71–9.


2021 ◽  
pp. 104281
Author(s):  
Eyal Ozeri ◽  
Peleg Rider ◽  
Shoham Rigbi ◽  
Galit Shahaf ◽  
Iulia I. Nita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document