scholarly journals Local climate zone-based urban land cover classification from multi-seasonal Sentinel-2 images with a recurrent residual network

2019 ◽  
Vol 154 ◽  
pp. 151-162 ◽  
Author(s):  
Chunping Qiu ◽  
Lichao Mou ◽  
Michael Schmitt ◽  
Xiao Xiang Zhu
2016 ◽  
Vol 3 (2) ◽  
pp. 127
Author(s):  
Jati Pratomo ◽  
Triyoga Widiastomo

The usage of Unmanned Aerial Vehicle (UAV) has grown rapidly in various fields, such as urban planning, search and rescue, and surveillance. Capturing images from UAV has many advantages compared with satellite imagery. For instance, higher spatial resolution and less impact from atmospheric variations can be obtained. However, there are difficulties in classifying urban features, due to the complexity of the urban land covers. The usage of Maximum Likelihood Classification (MLC) has limitations since it is based on the assumption of the normal distribution of pixel values, where, in fact, urban features are not normally distributed. There are advantages in using the Markov Random Field (MRF) for urban land cover classification as it assumes that neighboring pixels have a higher probability to be classified in the same class rather than a different class. This research aimed to determine the impact of the smoothness (λ) and the updating temperature (Tupd) on the accuracy result (κ) in MRF. We used a UAV VHIR sized 587 square meters, with six-centimetre resolution, taken in Bogor Regency, Indonesia. The result showed that the kappa value (κ) increases proportionally with the smoothness (λ) until it reaches the maximum (κ), then the value drops. The usage of higher (Tupd) has resulted in better (κ) although it also led to a higher Standard Deviations (SD). Using the most optimal parameter, MRF resulted in slightly higher (κ) compared with MLC.


2018 ◽  
Vol 10 (10) ◽  
pp. 1572 ◽  
Author(s):  
Chunping Qiu ◽  
Michael Schmitt ◽  
Lichao Mou ◽  
Pedram Ghamisi ◽  
Xiao Zhu

Global Local Climate Zone (LCZ) maps, indicating urban structures and land use, are crucial for Urban Heat Island (UHI) studies and also as starting points to better understand the spatio-temporal dynamics of cities worldwide. However, reliable LCZ maps are not available on a global scale, hindering scientific progress across a range of disciplines that study the functionality of sustainable cities. As a first step towards large-scale LCZ mapping, this paper tries to provide guidance about data/feature choice. To this end, we evaluate the spectral reflectance and spectral indices of the globally available Sentinel-2 and Landsat-8 imagery, as well as the Global Urban Footprint (GUF) dataset, the OpenStreetMap layers buildings and land use and the Visible Infrared Imager Radiometer Suite (VIIRS)-based Nighttime Light (NTL) data, regarding their relevance for discriminating different Local Climate Zones (LCZs). Using a Residual convolutional neural Network (ResNet), a systematic analysis of feature importance is performed with a manually-labeled dataset containing nine cities located in Europe. Based on the investigation of the data and feature choice, we propose a framework to fully exploit the available datasets. The results show that GUF, OSM and NTL can contribute to the classification accuracy of some LCZs with relatively few samples, and it is suggested that Landsat-8 and Sentinel-2 spectral reflectances should be jointly used, for example in a majority voting manner, as proven by the improvement from the proposed framework, for large-scale LCZ mapping.


Author(s):  
Trinh Le Hung

The classification of urban land cover/land use is a difficult task due to the complexity in the structure of the urban surface. This paper presents the method of combining of Sentinel 2 MSI and Landsat 8 multi-resolution satellite image data for urban bare land classification based on NDBaI index. Two images of Sentinel 2 and Landsat 8 acquired closely together, were used to calculate the NDBaI index, in which sortware infrared band (band 11) of Sentinel 2 MSI image and thermal infrared band (band 10) of Landsat 8 image were used to improve the spatial resolution of NDBaI index. The results obtained from two experimental areas showed that, the total accuracy of classifying bare land from the NDBaI index which calculated by the proposed method increased by about 6% compared to the method using the NDBaI index, which is calculated using only Landsat 8 data. The results obtained in this study contribute to improving the efficiency of using free remote sensing data in urban land cover/land use classification.


Sign in / Sign up

Export Citation Format

Share Document