scholarly journals Direct measurements, numerical predictions and simple formula estimations of welding-induced biaxial residual stresses in a full-scale steel stiffened plate structure

Author(s):  
Myung Su Yi ◽  
Sung Hwan Noh ◽  
Dong Hun Lee ◽  
Dong Houi Seo ◽  
Jeom Kee Paik
2018 ◽  
Vol Vol 160 (A4) ◽  
Author(s):  
M S Yi ◽  
C M Hyun ◽  
J K Paik

Plated structures such as ships and offshore structures are constructed using welding techniques that attach support members (or stiffeners) to the plating. During this process, initial imperfections develop in the form of initial deformations (deflections or distortions) and residual stresses. These initial imperfections significantly affect the buckling and ultimate strength of these structures. Therefore, to assess the strength of welded plate structures, it is very important to predict the magnitude and pattern of welding-induced initial imperfections and their effects on buckling and ultimate strength. To determine the reliability of the prediction methods, it is desirable to validate the theoretical or numerical predictions of welding-induced initial imperfections through comparison with full-scale actual measurements. However, full-scale measurement databases are lacking, as they are costly to obtain. This study contributes to the development of a full-scale measurement database of welding-induced initial imperfections in steel-stiffened plate structures. The target structures are parts of real (full-scale) deckhouses in very large crude oil carrier class floating, production, storage and offloading unit structures. For parametric study purposes, four test structures by varying plate thickness are measured while the stiffener types and weld bead length are fixed. Modern technologies for measuring initial deformations and residual stresses are applied. The details of the measurement methods are documented for the use of other researchers and practicing engineers who want to validate their computational models for predicting welding-induced initial imperfections.


Author(s):  
M S Yi ◽  
C M Hyun ◽  
J K Paik

Plated structures such as ships and offshore structures are constructed using welding techniques that attach support members (or stiffeners) to the plating. During this process, initial imperfections develop in the form of initial deformations (deflections or distortions) and residual stresses. These initial imperfections significantly affect the buckling and ultimate strength of these structures. Therefore, to assess the strength of welded plate structures, it is very important to predict the magnitude and pattern of welding-induced initial imperfections and their effects on buckling and ultimate strength. To determine the reliability of the prediction methods, it is desirable to validate the theoretical or numerical predictions of welding-induced initial imperfections through comparison with full-scale actual measurements. However, full-scale measurement databases are lacking, as they are costly to obtain. This study contributes to the development of a full-scale measurement database of welding-induced initial imperfections in steel-stiffened plate structures. The target structures are parts of real (full-scale) deckhouses in very large crude oil carrier class floating, production, storage and offloading unit structures. For parametric study purposes, four test structures by varying plate thickness are measured while the stiffener types and weld bead length are fixed. Modern technologies for measuring initial deformations and residual stresses are applied. The details of the measurement methods are documented for the use of other researchers and practicing engineers who welding-induced initial imperfections.


Structures ◽  
2020 ◽  
Vol 26 ◽  
pp. 996-1009 ◽  
Author(s):  
Jeom Kee Paik ◽  
Dong Hun Lee ◽  
Sung Hwan Noh ◽  
Dae Kyeom Park ◽  
Jonas W. Ringsberg

2020 ◽  
Vol 15 (sup1) ◽  
pp. S29-S45 ◽  
Author(s):  
Jeom Kee Paik ◽  
Dong Hun Lee ◽  
Sung Hwan Noh ◽  
Dae Kyeom Park ◽  
Jonas W. Ringsberg

1983 ◽  
Vol 1983 (153) ◽  
pp. 268-280
Author(s):  
Keiichi Sakai ◽  
Takeshi Uemura ◽  
Nobu Iino ◽  
Osamu Ushirokawa ◽  
Takayoshi Miyanari ◽  
...  

2021 ◽  
Author(s):  
ARTURO LEOS ◽  
KOSTIANTYN VASYLEVSKYI ◽  
IGOR TSUKROV ◽  
TODD GROSS ◽  
BORYS DRACH

Manufacturing-induced residual stresses in carbon/epoxy 3D woven composites arise during cooling after curing due to a large difference in the coefficients of thermal expansion between the carbon fibers and the epoxy matrix. The magnitudes of these stresses appear to be higher in composites with high throughthickness reinforcement and in some cases are sufficient to lead to matrix cracking. This paper presents a numerical approach to simulation of development of manufacturing-induced residual stresses in an orthogonal 3D woven composite unit cell using finite element analysis. The proposed mesoscale modeling combines viscoelastic stress relaxation of the epoxy matrix and realistic reinforcement geometry (based on microtomography and fabric mechanics simulations) and includes imaginginformed interfacial (tow/matrix) cracks. Sensitivity of the numerical predictions to reinforcement geometry and presence of defects is discussed. To validate the predictions, blind hole drilling is simulated, and the predicted resulting surface displacements are compared to the experimentally measured values. The validated model provides an insight into the volumetric distribution of residual stresses in 3D woven composites. The presented approach can be used for studies of residual stress effects on mechanical performance of composites and strategies directed at their mitigation.


Sign in / Sign up

Export Citation Format

Share Document