EXPERIMENTALLY VALIDATED SIMULATIONS OF BLIND HOLE DRILLING IN 3D WOVEN CARBON/EPOXY COMPOSITE WITH PROCESSING-INDUCED RESIDUAL STRESSES

2021 ◽  
Author(s):  
ARTURO LEOS ◽  
KOSTIANTYN VASYLEVSKYI ◽  
IGOR TSUKROV ◽  
TODD GROSS ◽  
BORYS DRACH

Manufacturing-induced residual stresses in carbon/epoxy 3D woven composites arise during cooling after curing due to a large difference in the coefficients of thermal expansion between the carbon fibers and the epoxy matrix. The magnitudes of these stresses appear to be higher in composites with high throughthickness reinforcement and in some cases are sufficient to lead to matrix cracking. This paper presents a numerical approach to simulation of development of manufacturing-induced residual stresses in an orthogonal 3D woven composite unit cell using finite element analysis. The proposed mesoscale modeling combines viscoelastic stress relaxation of the epoxy matrix and realistic reinforcement geometry (based on microtomography and fabric mechanics simulations) and includes imaginginformed interfacial (tow/matrix) cracks. Sensitivity of the numerical predictions to reinforcement geometry and presence of defects is discussed. To validate the predictions, blind hole drilling is simulated, and the predicted resulting surface displacements are compared to the experimentally measured values. The validated model provides an insight into the volumetric distribution of residual stresses in 3D woven composites. The presented approach can be used for studies of residual stress effects on mechanical performance of composites and strategies directed at their mitigation.

Author(s):  
Igor Tsukrov ◽  
Michael Giovinazzo ◽  
Kateryna Vyshenska ◽  
Harun Bayraktar ◽  
Jon Goering ◽  
...  

Finite element models of 3D woven composites are developed to predict possible microcracking of the matrix during curing. A specific ply-to-ply weave architecture for carbon fiber reinforced epoxy is chosen as a benchmark case. Two approaches to defining the geometry of reinforcement are considered. One is based on the nominal description of composite, and the second involves fabric mechanics simulations. Finite element models utilizing these approaches are used to calculate the overall elastic properties of the composite, and predict residual stresses due to resin curing. It is shown that for the same volume fraction of reinforcement, the difference in the predicted overall in-plane stiffness is on the order of 10%. Numerical model utilizing the fabric mechanics simulations predicts lower level of residual stresses due to curing, as compared to nominal geometry models.


2013 ◽  
Vol 577-578 ◽  
pp. 253-256 ◽  
Author(s):  
Igor Tsukrov ◽  
Borys Drach ◽  
Harun Bayraktar ◽  
Jon Goering

This paper presents finite element modeling effort to predict possible microcracking of the matrix in 3D woven composites during curing. Three different reinforcement architectures are considered: a ply-to-ply weave, a one-by-one and a two-by-two orthogonal through-thickness reinforcement. To realistically reproduce the as-woven geometry of the fabric, the data from the Digital Fabric Mechanics Analyzer software is used as input for finite element modeling. The curing processed is modeled in a simplified way as a uniform drop in temperature from the resin curing to room temperature. The simulations show that the amount of residual stress is strongly influenced by the presence of through-thickness reinforcement.


2019 ◽  
Vol 53 (20) ◽  
pp. 2789-2799 ◽  
Author(s):  
Muhammad Kashif ◽  
Syed TA Hamdani ◽  
Muhammad Zubair ◽  
Yasir Nawab

Natural fiber-based preforms possess various attractive characteristics in different applications due to their light weight, value for money and compatibility with the environment. The possible tailorable shapes and mechanical properties make these more attractive for composites applications. Earlier, researchers focused on characterizing preforms for composites, but this work emphasis on the outcome of the weave patterns on composites performance. Mechanical performance (especially shear beam strength) of the 3D layer-to-layer and through-the-thickness prefroms with different interlocking patterns was deliberated. Composites were fabricated using 3D woven jute preforms and green epoxy system. The diverse performance of composites was compared. The effect of weave pattern remained prominent in their composites.


Sign in / Sign up

Export Citation Format

Share Document