Reflection on earthquake damage of buildings in 2015 Nepal earthquake and seismic measures for post-earthquake reconstruction

Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 647-658 ◽  
Author(s):  
Chengqing Liu ◽  
Dengjia Fang ◽  
Lijie Zhao
Author(s):  
A. Akilan ◽  
S. Padhy ◽  
V. P. Dimri ◽  
H. Schuh ◽  
K. K. Abdul Azeez

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ganesh Dangal ◽  
Ojash Dangal ◽  
Dharana Gelal

Nepal earthquake of 2015, a massive earthquake that struck near the city of Kathmandu (Gorkha) in central Nepal on April 25, 2015. Nearly 9,000 people were killed, many thousands more were injured, and more than 600,000 structures in Kathmandu and other nearby 31 districts were either damaged or destroyed. The earthquake was felt throughout central and eastern Nepal, much of the Ganges River plain in northern India, and northwestern Bangladesh, as well as in the southern parts of the Plateau of Tibet and western Bhutan.


2020 ◽  
Vol 12 (12) ◽  
pp. 2009 ◽  
Author(s):  
Shengjun Gao ◽  
Yunhao Chen ◽  
Long Liang ◽  
Adu Gong

Earthquakes are unpredictable and potentially destructive natural disasters that take a long time to recover from. Monitoring post-earthquake human activity (HA) is of great significance to recovery and reconstruction work. There is a strong correlation between night-time light (NTL) and HA, which aid in the study of spatiotemporal changes in post-earthquake human activities. However, seasonal and noise impact from National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) data greatly limits their application. To tackle these issues, random noise and seasonal fluctuation of NPP/VIIRS from January 2014 to December 2018 is removed by adopting the seasonal-trend decomposition procedure based on loess (STL). Based on the theory of post-earthquake recovery model, a post-earthquake night-time light piecewise (PNLP) pattern is explored by employing the National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) monthly data. PNLP indicators, including pre-earthquake development rate (kp), recovery rate (kr1), reconstruction rate (kr2), development rate (kd), relative reconstruction rate (krp) and loss (S), are defined to describe the PNLP pattern. Furthermore, the 2015 Nepal earthquake is chosen as a case study and the spatiotemporal changes in different areas are analyzed. The results reveal that: (1) STL is an effective algorithm for obtaining HA trend from the time series of denoising NTL; (2) the PNLP pattern, divided into four phases, namely the emergency phase (EP), recovery phase (RP-1), reconstruction phase (RP-2), and development phase (DP), aptly describes the variation in post-earthquake HA; (3) PNLP indicators are capable of evaluating the recovery differences across regions. The main socio-economic factors affecting the PNLP pattern and PNLP indicators are energy source for lighting, type of building, agricultural economy, and human poverty index. Based on the NPP/VIIRS data, the PNLP pattern can reflect the periodical changes of HA after earthquakes and provide an effective means for the analysis and evaluation of post-earthquake recovery and reconstruction.


Sign in / Sign up

Export Citation Format

Share Document