Equivalent viscous damping of steel members for direct displacement based design

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 4781-4790
Author(s):  
Ahmad Tarawneh ◽  
Sereen Majdalaweyh ◽  
Hazim Dwairi
2016 ◽  
Vol 32 (2) ◽  
pp. 843-859 ◽  
Author(s):  
Cuiyan Kong ◽  
Mervyn J. Kowalsky

Damping scaling factors (DSFs) play an important role in direct displacement-based design (DDBD) as they provide a means to establish displacement response spectra for damping values beyond 5%. Response spectra for multiple damping values are needed for DDBD as the approach relies on equivalent linearization, expressed in the form of effective stiffness and equivalent viscous damping, to establish design forces for prescribed performance limit states. In the past, DSFs based on the Eurocode have been employed for DDBD; however, recent research has resulted in more robust DSF models. This paper examines the accuracy of the current DSF equation used in DDBD across the parameters that are important for structural design. A nonlinear regression analysis is performed based on the data obtained by the Rezaeian et al. (2014) model, and a base shear adjustment factor (SAF) is proposed for application to the DDBD base shear equation.


Author(s):  
J.L. Ceballos C. ◽  
T.J. Sullivan

The use of hybrid joints to provide pre-cast concrete and timber structures with ductile response and self-centering capability is becoming increasingly popular in New Zealand, as is evident by the increasing number of building solutions that incorporate the technology as well as the design provisions for hybrid systems currently included in the New Zealand Concrete standard. This paper raises some issues with the current code approach to estimate the inelastic seismic displacement demand on hybrid systems. The work then presents the results of a series of non-linear time history analyses of single degree of freedom (SDOF) systems characterised by the flag-shaped hysteretic rule, in order to identify a general, improved expression for the equivalent viscous damping of hybrid systems. The new equivalent viscous damping expression is expected to provide more reliable control of inelastic displacement demands for hybrid systems design used Displacement-Based Design (DBD) procedures. In addition, the last part of the paper also discusses how the findings in the paper could be utilised to provide improved control of displacement demands when hybrid systems are designed using force-based procedures.


Author(s):  
Timothy J. Sullivan

An innovative application of Direct Displacement-Based Design (DBD) is presented for a modern 8-storey dual system structure consisting of interior concrete walls in parallel to a number of large steel eccentrically braced frames, fitted with visco-elastic dampers at link positions. The innovative DBD methodology lets the designer directly control the forces in the structure by choosing strength proportions at the start of the design procedure. The strength proportions are used to establish the displaced shape at peak response and thereby establish the equivalent single-degree-of-freedom system design displacement, mass and effective height. A new simplified formulation for the equivalent viscous damping of systems possessing viscous dampers is proposed which also utilises the strength proportions chosen by the designer at the start of the process. The DBD approach developed is relatively quick to use, enabling the seismic design of the 8-storey case study structure to be undertaken without the development of a computer model. To verify the ability of the design method, non-linear time-history analyses are undertaken using a suite of spectrum-compatible accelerograms. These analyses demonstrate that the design solution successfully achieves the design objectives to limit building deformations, and therefore damage.


Author(s):  
Timothy J. Sullivan

An innovative application of Direct Displacement-Based Design (DBD) is presented for a modern 8-storey dual system structure consisting of interior concrete walls in parallel to a number of large steel eccentrically braced frames, fitted with visco-elastic dampers at link positions. The innovative DBD methodology lets the designer directly control the forces in the structure by choosing strength proportions at the start of the design procedure. The strength proportions are used to establish the displaced shape at peak response and thereby establish the equivalent single-degree-of-freedom system design displacement, mass and effective height. A new simplified formulation for the equivalent viscous damping of systems possessing viscous dampers is proposed which also utilises the strength proportions chosen by the designer at the start of the process. The DBD approach developed is relatively quick to use, enabling the seismic design of the 8-storey case study structure to be undertaken without the development of a computer model. To verify the ability of the design method, non-linear time-history analyses are undertaken using a suite of spectrum-compatible accelerograms. These analyses demonstrate that the design solution successfully achieves the design objectives to limit building deformations, and therefore damage.


2012 ◽  
Vol 594-597 ◽  
pp. 795-799
Author(s):  
Gui Tao Chen ◽  
De Min Wei

A displacement-based optimization design method of RC structure was proposed by combining direct displacement-based design method with nonlinear programming technique. To avert the influence of target displacement, the stationary constraint displacement was presented, and the target displacement can be updated during the optimal design process. Principle of virtual work and Gaussian integral method was employed to simplify the explicit relationship between horizontal displacement and the section dimension. Comparison analysis of the local optimal results corresponding to different displacement shapes was conducted to achieve global optimal design. The numerical tests presented demonstrate the computational advantages of the discussed methods and suggesting that the proposed method is a reliably and efficiently tool for displacement-based optimal design.


Sign in / Sign up

Export Citation Format

Share Document