A Displacement-Based Optimal Design Method of RC Frames Subjected to Minor Earthquakes

2012 ◽  
Vol 594-597 ◽  
pp. 795-799
Author(s):  
Gui Tao Chen ◽  
De Min Wei

A displacement-based optimization design method of RC structure was proposed by combining direct displacement-based design method with nonlinear programming technique. To avert the influence of target displacement, the stationary constraint displacement was presented, and the target displacement can be updated during the optimal design process. Principle of virtual work and Gaussian integral method was employed to simplify the explicit relationship between horizontal displacement and the section dimension. Comparison analysis of the local optimal results corresponding to different displacement shapes was conducted to achieve global optimal design. The numerical tests presented demonstrate the computational advantages of the discussed methods and suggesting that the proposed method is a reliably and efficiently tool for displacement-based optimal design.

2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1064-1081
Author(s):  
Guang Yu ◽  
Jun Wu ◽  
Liping Wang ◽  
Ying Gao

SUMMARYSpray-painting equipments are important for the automatic spraying of long conical objects such as rocket fairing. This paper proposes a spray-painting equipment that consists of a feed worktable, a gantry frame and two serial–parallel mechanisms and investigates the optimal design of PRR–PRR parallel manipulator in serial–parallel mechanisms. Based on the kinematic model of the parallel manipulator, the conditioning performance, workspace and accuracy performance indices are defined. The dynamic model is derived using virtual work principle and dynamic evaluation index is defined. The conditioning performance, workspace, accuracy performance and dynamic performance are involved in multi-objective optimization design to determine the optimal geometrical parameters of the parallel manipulator. Furthermore, the geometrical parameters of the gantry frame are optimized. An example is given to show how to determine these parameters by taking a long object with conical surface as painted object.


2013 ◽  
Vol 395-396 ◽  
pp. 1206-1211 ◽  
Author(s):  
Yang Li ◽  
Zhong Lei Wang ◽  
Xiao Li ◽  
Gang Cheng

For the difficulty of calculating the size of the Pre-Manufactured hole of flanging, the formula was derived by using the theory of equal line length and the theory of equal area. And the formula was verified by finite element simulation. Due to theoretical formula has certain error, the optimal design method based on interpolation was put forward and optimization design the size of the Pre-Manufactured hole of flanging. Engineering example shows that this optimization design method is accuracy and convergence speed, and it can quickly calculate the the size of the Pre-Manufactured hole of flanging.


Author(s):  
Anagha Girish Malu ◽  
Satyabrata Choudhury

The Direct Displacement-Based Design (DDBD) method has become a popular seismic design tool for structures. It takes drift as the performance criterion while designing structures. This method overcomes the shortcomings of the traditional force-based seismic design method, which considers peak force as the design parameter. In terms of structural damage, deflection is a better indicator, and hence, DDBD is a more acceptable method for seismic design. In this paper, a 12-story RC frame building with supplemental damping has been designed and investigated using a direct procedure of calculation, while considering the displacement-based design method. The performance of building with and without viscous dampers for a particular performance level has been compared. The effects of the non-linearity of dampers have also been discussed, and the effect of constant and story proportional drift proportional damper forces have been investigated. The results of various cases have been compared. It has been found that drift proportional story shear proportional carried damper design leads to construction economy.


2011 ◽  
Vol 110-116 ◽  
pp. 685-690
Author(s):  
Wei Gang Wen ◽  
Hui Juan Jia

According to the structure features of gear system in co-rotating twin screw extruder, the model of the gear system is built, and multi-objective optimization genetic approach based on the Pareto-rank is proposed to optimize the parameters of the gear system. The advanced optimal design method for the gear unit in co-rotating twin screw extruder is studied. A typical gear system in co-rotating twin screw extruder is designed, and the results show that the gear system meets the requirements in all aspects. This design method of the gear system is synthetic optimization for the gear system in co-rotating twin screw extruder.


Sign in / Sign up

Export Citation Format

Share Document