Experimental and numerical investigation on the structural performance of a novel type of pultruded composite cross-arm for power transmission towers

Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 833-844
Author(s):  
Ali Asghar Zekavati ◽  
Mohammad Ali Jafari ◽  
Ali Saeedi
Author(s):  
Kuan Ye ◽  
Kai Zhou ◽  
Ren Zhigang ◽  
Ruizhe Zhang ◽  
Chunsheng Li ◽  
...  

The power transmission tower’s ground electrode defect will affect its normal current dispersion function and threaten the power system’s safe and stable operation and even personal safety. Aiming at the problem that the buried grounding grid is difficult to be detected, this paper proposes a method for identifying the ground electrode defects of transmission towers based on single-side multi-point excited ultrasonic guided waves. The geometric model, ultrasonic excitation model, and physical model are established, and the feasibility of ultrasonic guided wave detection is verified through the simulation and experiment. In actual inspection, it is equally important to determine the specific location of the defect. Therefore, a multi-point excitation method is proposed to determine the defect’s actual position by combining the ultrasonic guided wave signals at different excitation positions. Besides, the precise quantification of flat steel grounding electrode defects is achieved through the feature extraction-neural network method. Field test results show that, compared with the commercial double-sided excitation transducer, the single-sided excitation transducer proposed in this paper has a lower defect quantization error in defect quantification. The average quantization error is reduced by approximately 76%.


2021 ◽  
Vol 194 ◽  
pp. 107106
Author(s):  
M.S. Coutinho ◽  
L.R.G.S. Lourenço Novo ◽  
M.T. de Melo ◽  
L.H.A. de Medeiros ◽  
D.C.P. Barbosa ◽  
...  

2016 ◽  
Vol 123 ◽  
pp. 31-40 ◽  
Author(s):  
Behrouz Asgarian ◽  
Soheil Dadras Eslamlou ◽  
Arash E. Zaghi ◽  
Masoud Mehr

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3257-3267
Author(s):  
Hai-Xin Liu ◽  
Han Fang ◽  
Jiong-Yi Zhu ◽  
Tak-Ming Chan

Author(s):  
Christoph Grossmann ◽  
Oliver Tegel

Abstract In this paper, the finite element analysis of circular wedge connections is described, and conclusions for the performance of the connection are derived. In the foreground of the examinations are stresses and deformations while tightening of the connection. Starting with the general structural performance, the influences on power transmission like slope, number of wedges, coefficient of sliding friction and outer hub diameter are discussed. An analytic function to describe the gap pressure within the tightened joint is introduced and rates to explain the problem of centering of circular wedge connections are shown. Finally two concepts for dimensioning are presented and recommendations for application of this connection are given.


Sign in / Sign up

Export Citation Format

Share Document