scholarly journals A study of irreducible components of Springer fibers using quiver varieties

Author(s):  
Mee Seong Im ◽  
Chun-Ju Lai ◽  
Arik Wilbert
2016 ◽  
Vol 152 (10) ◽  
pp. 1999-2040 ◽  
Author(s):  
Tristan Bozec

In the context of varieties of representations of arbitrary quivers, possibly carrying loops, we define a generalization of Lusztig Lagrangian subvarieties. From the combinatorial study of their irreducible components arises a structure richer than the usual Kashiwara crystals. Along with the geometric study of Nakajima quiver varieties, in the same context, this yields a notion of generalized crystals, coming with a tensor product. As an application, we define the semicanonical basis of the Hopf algebra generalizing quantum groups, which was already equipped with a canonical basis. The irreducible components of the Nakajima varieties provide the family of highest weight crystals associated to dominant weights, as in the classical case.


Author(s):  
Jingren Chi

We study basic geometric properties of Kottwitz–Viehmann varieties, which are certain generalizations of affine Springer fibers that encode orbital integrals of spherical Hecke functions. Based on the previous work of A. Bouthier and the author, we show that these varieties are equidimensional and give a precise formula for their dimension. Also we give a conjectural description of their number of irreducible components in terms of certain weight multiplicities of the Langlands dual group and we prove the conjecture in the case of unramified conjugacy class.


2021 ◽  
Vol 33 (1) ◽  
pp. 47-56
Author(s):  
S. Buyalo

Orthogonal representations η n : S n ↷ R N \eta _n\colon S_n\curvearrowright \mathbb {R}^N of the symmetric groups S n S_n , n ≥ 4 n\ge 4 , with N = n ! / 8 N=n!/8 , emerging from symmetries of double ratios are treated. For n = 5 n=5 , the representation η 5 \eta _5 is decomposed into irreducible components and it is shown that a certain component yields a solution of the equations that describe the Möbius structures in the class of sub-Möbius structures. In this sense, a condition determining the Möbius structures is implicit already in symmetries of double ratios.


2017 ◽  
Vol 3 (3) ◽  
pp. 423-443
Author(s):  
Cordian Riener ◽  
Nicolai Vorobjov

2015 ◽  
Vol 152 (2) ◽  
pp. 299-326 ◽  
Author(s):  
Fan Qin

We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


2012 ◽  
Vol 23 (04) ◽  
pp. 1250031 ◽  
Author(s):  
JOSÉ F. FERNANDO ◽  
J. M. GAMBOA

In this work we define a semialgebraic set S ⊂ ℝn to be irreducible if the noetherian ring [Formula: see text] of Nash functions on S is an integral domain. Keeping this notion we develop a satisfactory theory of irreducible components of semialgebraic sets, and we use it fruitfully to approach four classical problems in Real Geometry for the ring [Formula: see text]: Substitution Theorem, Positivstellensätze, 17th Hilbert Problem and real Nullstellensatz, whose solution was known just in case S = M is an affine Nash manifold. In fact, we give full characterizations of the families of semialgebraic sets for which these classical results are true.


2021 ◽  
Author(s):  
◽  
Aaron Armour

<p><b>The algebraic and geometric classification of k-algbras, of dimension fouror less, was started by Gabriel in “Finite representation type is open” [12].</b></p> <p>Several years later Mazzola continued in this direction with his paper “Thealgebraic and geometric classification of associative algebras of dimensionfive” [21]. The problem we attempt in this thesis, is to extend the resultsof Gabriel to the setting of super (or Z2-graded) algebras — our main effortsbeing devoted to the case of superalgebras of dimension four. Wegive an algebraic classification for superalgebras of dimension four withnon-trivial Z2-grading. By combining these results with Gabriel’s we obtaina complete algebraic classification of four dimensional superalgebras.</p> <p>This completes the classification of four dimensional Yetter-Drinfeld modulealgebras over Sweedler’s Hopf algebra H4 given by Chen and Zhangin “Four dimensional Yetter-Drinfeld module algebras over H4” [9]. Thegeometric classification problem leads us to define a new variety, Salgn —the variety of n-dimensional superalgebras—and study some of its properties.</p> <p>The geometry of Salgn is influenced by the geometry of the varietyAlgn yet it is also more complicated, an important difference being thatSalgn is disconnected. While we make significant progress on the geometricclassification of four dimensional superalgebras, it is not complete. Wediscover twenty irreducible components of Salg4 — however there couldbe up to two further irreducible components.</p>


Sign in / Sign up

Export Citation Format

Share Document