scholarly journals Thermal conductivity of metal matrix composites with coated inclusions: A new modelling approach for interface engineering design in thermal management

2018 ◽  
Vol 745 ◽  
pp. 849-855 ◽  
Author(s):  
J.M. Molina-Jordá
2005 ◽  
Vol 475-479 ◽  
pp. 3335-3338
Author(s):  
F. Alhama ◽  
Diego Alcaraz ◽  
S. Gómez-Lopera

A simple model based on the network simulation method is proposed to estimate numerically the thermal conductivity of particulate reinforced metal-matrix composites. The estimation is carried out running the model in the standard Pspice code, the computing time being negligible. The 3-D solid is discretized in 1000 cubic volume elements which represent an acceptable approximation of the shape of the particles. For each reinforcement percentage and each combination of matrix and reinforcement more than 200 tests were carried out, so that the results may be considered close to the exact values. The limit values are scarcely influenced by the effect of the 3-D geometry and basically depend on the amount of the reinforcement. Applications to aluminum and titanium matrix composites reinforced with different types of particles are presented covering a wide range of reinforcement percentages.


1993 ◽  
Vol 8 (5) ◽  
pp. 1169-1173 ◽  
Author(s):  
William B. Johnson ◽  
B. Sonuparlak

Diamond particles are unique fillers for metal matrix composites because of their extremely high modulus, high thermal conductivity, and low coefficient of thermal expansion. Diamond reinforced aluminum metal matrix composites were prepared using a pressureless metal infiltration process. The diamond particulates are coated with SiC prior to infiltration to prevent the formation of Al4C3, which is a product of the reaction between aluminum and diamond. The measured thermal conductivity of these initial diamond/Al metal matrix composites is as high as 259 W/m-K. The effects of coating thickness on the physical properties of the diamond/Al metal matrix composite, including Young's modulus, 4-point bend strength, coefficient of thermal expansion, and thermal conductivity, are presented.


2015 ◽  
Vol 41 (2) ◽  
pp. 132-157 ◽  
Author(s):  
Sarabjeet Singh Sidhu ◽  
Sanjeev Kumar ◽  
Ajay Batish

Sign in / Sign up

Export Citation Format

Share Document