Tl2S-GeS-GeS2 system: Glass formation, macroscopic properties, and charge transport

2019 ◽  
Vol 777 ◽  
pp. 902-914 ◽  
Author(s):  
M. Bokova ◽  
A. Paraskiva ◽  
M. Kassem ◽  
I. Alekseev ◽  
E. Bychkov
RSC Advances ◽  
2015 ◽  
Vol 5 (74) ◽  
pp. 60220-60229 ◽  
Author(s):  
Q. Wang ◽  
J. H. Li ◽  
B. X. Liu

For Mg–Ni–Y system, glass formation is jointly studied by thermodynamic calculations and atomistic simulations. The prediction results have extensive implications for the Mg-based family and could be of great help for guiding the composition design.


1990 ◽  
Vol 51 (C4) ◽  
pp. C4-111-C4-117 ◽  
Author(s):  
L. J. GALLEGO ◽  
J. A. SOMOZA ◽  
H. M. FERNANDEZ ◽  
J. A. ALONSO

2020 ◽  
Author(s):  
Jesse Park ◽  
Brianna Collins ◽  
Lucy Darago ◽  
Tomce Runcevski ◽  
Michael Aubrey ◽  
...  

<b>Materials that combine magnetic order with other desirable physical attributes offer to revolutionize our energy landscape. Indeed, such materials could find transformative applications in spintronics, quantum sensing, low-density magnets, and gas separations. As a result, efforts to design multifunctional magnetic materials have recently moved beyond traditional solid-state materials to metal–organic solids. Among these, metal–organic frameworks in particular bear structures that offer intrinsic porosity, vast chemical and structural programmability, and tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating strong magnetic exchange in extended metal–organic solids. Here, we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at <i>T</i><sub>C</sub> = 225 K in a mixed-valence chromium(II/III) triazolate compound, representing the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism is shown to proceed via a double-exchange mechanism, the first such observation in any metal–organic material. Critically, this mechanism results in variable-temperature conductivity with barrierless charge transport below <i>T</i><sub>C</sub> and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. Taken together, the insights gleaned from these results are expected to provide a blueprint for the design and synthesis of porous materials with synergistic high-temperature magnetic and charge transport properties. </b>


Sign in / Sign up

Export Citation Format

Share Document