MACROSCOPIC PROPERTIES OF SUSPENSIONS IN AN INVISCID FLUID

2017 ◽  
Vol 29 (1-4) ◽  
pp. 276-398
Author(s):  
Graham B. Wallis
Author(s):  
T. O. M. Forslund ◽  
I. A. S. Larsson ◽  
J. G. I. Hellström ◽  
T. S. Lundström

AbstractThe effects of periodicity assumptions on the macroscopic properties of packed porous beds are evaluated using a cascaded Lattice-Boltzmann method model. The porous bed is modelled as cubic and staggered packings of mono-radii circular obstructions where the bed porosity is varied by altering the circle radii. The results for the macroscopic properties are validated using previously published results. For unsteady flows, it is found that one unit cell is not enough to represent all structures of the fluid flow which substantially impacts the permeability and dispersive properties of the porous bed. In the steady region, a single unit cell is shown to accurately represent the fluid flow across all cases studied


Author(s):  
Joseph J. Webber ◽  
Herbert E. Huppert

AbstractMotivated by shallow ocean waves propagating over coral reefs, we investigate the drift velocities due to surface wave motion in an effectively inviscid fluid that overlies a saturated porous bed of finite depth. Previous work in this area either neglects the large-scale flow between layers (Phillips in Flow and reactions in permeable rocks, Cambridge University Press, Cambridge, 1991) or only considers the drift above the porous layer (Monismith in Ann Rev Fluid Mech 39:37–55, 2007). Overcoming these limitations, we propose a model where flow is described by a velocity potential above the porous layer and by Darcy’s law in the porous bed, with derived matching conditions at the interface between the two layers. Both a horizontal and a novel vertical drift effect arise from the damping of the porous bed, which requires the use of a complex wavenumber k. This is in contrast to the purely horizontal second-order drift first derived by Stokes (Trans Camb Philos Soc 8:441–455, 1847) when working with solely a pure fluid layer. Our work provides a physical model for coral reefs in shallow seas, where fluid drift both above and within the reef is vitally important for maintaining a healthy reef ecosystem (Koehl et al. In: Proceedings of the 8th International Coral Reef Symposium, vol 2, pp 1087–1092, 1997; Monismith in Ann Rev Fluid Mech 39:37–55, 2007). We compare our model with field measurements by Koehl and Hadfield (J Mar Syst 49:75–88, 2004) and also explain the vertical drift effects as documented by Koehl et al. (Mar Ecol Prog Ser 335:1–18, 2007), who measured the exchange between a coral reef layer and the (relatively shallow) sea above.


1979 ◽  
Vol 92 (3) ◽  
pp. 497-503 ◽  
Author(s):  
P. G. Saffman

It is shown that a symmetrical vortex pair consisting of equal and opposite vortices approaching a plane wall at right angles must approach the wall monotonically in the absence of viscous effects. An approximate calculation is carried out for uniform vortices in which the vortices are assumed to be deformed into ellipses whose axis ratio is determined by the local rate of strain according to the results of Moore & Saffman (1971).


Sign in / Sign up

Export Citation Format

Share Document