absorption studies
Recently Published Documents


TOTAL DOCUMENTS

1782
(FIVE YEARS 88)

H-INDEX

77
(FIVE YEARS 5)

Author(s):  
Nathan A. Turner ◽  
Jason G. Mance ◽  
Klaus Attenkofer ◽  
Bernhard W. Adams ◽  
Xiaoyi Zhang ◽  
...  

Author(s):  
P. Divya ◽  
N. Angeline Little Flower ◽  
Annie Sujatha ◽  
N. Padmanathan ◽  
Priya Rose ◽  
...  

2021 ◽  
pp. 118379
Author(s):  
Leandro H. Zucolotto Cocca ◽  
André Pelosi ◽  
Lucas F. Sciuti ◽  
Luis M. G. Abegão ◽  
Kenji Kamada ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7154
Author(s):  
Laura Schioppa ◽  
Fanta Fall ◽  
Sergio Ortiz ◽  
Jacques H. Poupaert ◽  
Joelle Quetin-Leclercq

Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to determine triterpenic esters’ stability in different biological-like media and the main microsomal degradation products. An HPLC-PDA method was developed and validated to simultaneously analyze and quantify bioactive triterpenic esters in methanol (LOQ: 2.5 and 1.25–100 µg/mL) and plasma (LOQ: 5–125 µg/mL). Overall, both triterpenic esters showed a stable profile in aqueous and buffered solutions as well as in entire plasma, suggesting gaining access to the ester function is difficult for plasma enzymes. Conversely, after 1 h, 30% esters degradation in acidic media was observed with potential different hydrolysis mechanisms. C-3 (15 and 150 µM) and C-27 esters (150 µM) showed a relatively low hepatic microsomal metabolism (<23%) after 1 h, which was significantly higher in the lowest concentration of C-27 esters (15 µM) (>40% degradation). Metabolic HPLC-PDA-HRMS studies suggested hydrolysis, hydroxylation, dehydration, O-methylation, hydroxylation and/or the reduction of hydrolyzed derivatives, depending on the concentration and the position of the ester link. Further permeability and absorption studies are required to better define triterpenic esters pharmacokinetic and specific formulations designed to increase their oral bioavailability.


2021 ◽  
Vol 5 (1SP) ◽  
pp. 34
Author(s):  
Nova Lidia Sitorus ◽  
Charisma Dilantika ◽  
Ray Wagiu Basrowi

ABSTRACT Background: Immature immune system in preterm infants is associated with gut dysbiosis and poses significant health risks to their growth and development. Current guidelines for managing preterm infants focuses solely on macro- and micronutrients, whereas preterm infants’ gastrointestinal system requires optimalization to support nutrient absorption. Studies on the positive impacts of prebiotics as supplements have been conducted, but has not been implemented in Indonesia. Indonesian pediatricians’ perspective on these findings needs to be assessed. Objectives: To describe the perspectives of Indonesian pediatricians on the role of gut microbiota balance in supporting immunity, growth, and development of preterm infants, and the role of breastmilk and prebiotic-supplemented formula in optimizing gut microbiota balance. Methods: A cross-sectional study was conducted on 114 Indonesian pediatricians using a previously-validated and previously-used questionnaire on the role of gut microbiota balance on preterm infants, as well as the role of breastmilk and prebiotic-supplemented formula in optimizing gut microbiota balance. Results: Most respondents agreed that gut microbiota balance supports immunity, growth, and development of preterm infants. Respondents also agreed that breastmilk contains nutrients that support gut microbiota balance and when breastmilk becomes unavailable, prebiotic-supplemented formula can be given as substitute. Conclusions: Indonesian pediatricians considered gut microbiota balance to be important for immunity, growth, and development of preterm infants, and breastmilk to be the most ideal source of nutrition for preterm infants in optimizing gut microbiota balance. When breastmilk is unavailable, prebiotic-supplemented formula can be considered as an alternative.


2021 ◽  
Author(s):  
SUCHETA JUNEJA ◽  
sushil kumar

Abstract Demand for efficient window layer in thin film solar cells with high crystallinity is ever increasing that finds important application in multi-junction/tandem silicon solar cells. Doping of diborane (B2H6) in hydrogenated silicon films using plasma discharge decomposition of silane (SiH4) and (B2H6) gases were analyzed. The boron flow (FB) to silane ratio was varied from 0–0.30. Variation in film characteristics with B2H6 gas-phase ratio were analyzed, and concluded that doping boron induces crystallization in hydrogenated amorphous silicon (a-Si: H) film structure. The Raman and field emission scanning electron spectroscopy (FESEM) confirmed the boron induced crystallinity effect in silicon films at different diborane flow. The results showed that as boron content increases beyond certain ratio, silicon crystallization suppresses and the crystallite sizes were also reduced. From results, it was observed that crystallinity in FB = 0.05 is 79 % and decreases to 77 % when films are slightly higher doped (FB = 0.10) and further decreases when the films were heavily doped. These results validate that boron suppresses silicon crystallization due to local deformations caused by the impurities. Infra-red absorption studies and their analysis also confirm the crystallization in boron doped films with additional band appears at ~ 611 cm− 1. This band is named as boron induced crystallinity mode of vibrational spectra. The estimated hydrogen content (CH) decreases confirmed crystallinity in the silicon structure with boron doping. Further, the energy dispersive spectroscopy (EDX) indicates the presence of boron and other impurities in deposited silicon films. The effect of boron on crystallinity and crystallite size as well as the mechanism were presented in detailed.


2021 ◽  
Vol 23 (09) ◽  
pp. 646-655
Author(s):  
Fazlur Rahaman ◽  
◽  
Prabhat Gautam ◽  
Priti Gupta ◽  
Subrata Mondal ◽  
...  

A new thiazole substituted chemosensor 1 has been designed and synthesized for selective detection of fluoride ions. The chemosensor 1 was characterized by 1H NMR and 13C NMR. The absorption studies of chemosensor in DMF exhibits two peaks at 283 nm and 327 nm. The anion sensing behaviour of chemosensor 1 for various anions (I-, Cl-, Br-, NO3-, HSO4-, PF6-, ClO4-) in DMF were investigated by UV-vis spectroscopy. Chemosensor 1 exhibited high degree of selectivity for fluoride ions over other anions. A good linearity in the range of 16-133 μM with 6.12 μM limit of detection value (LOD) was observed.


Sign in / Sign up

Export Citation Format

Share Document