Lithium-ion conductive coating layer on nickel rich layered oxide cathode material with improved electrochemical properties for Li-ion battery

2019 ◽  
Vol 784 ◽  
pp. 1311-1322 ◽  
Author(s):  
Hao Yuan ◽  
Wenbo Song ◽  
Meng Wang ◽  
Yijie Gu ◽  
Yunbo Chen
2019 ◽  
Vol 45 (3) ◽  
pp. 3177-3185 ◽  
Author(s):  
Meng Wang ◽  
Yongqiang Gong ◽  
Yijie Gu ◽  
Yunbo Chen ◽  
Lin Chen ◽  
...  

2010 ◽  
Vol 17 (01) ◽  
pp. 51-58 ◽  
Author(s):  
JEONG-HUN JU ◽  
YOUNG-MIN CHUNG ◽  
YU-RIM BAK ◽  
MOON-JIN HWANG ◽  
KWANG-SUN RYU

Carbon nano-coated LiNi 0.8 Co 0.15 Al 0.05 O 2/ C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the primary particles. The carbon nano-coated LNCAO/C exhibited good electrochemical performance at high C -rate. Also, the thermal stability at a highly oxidized state of the carbon nano-coated LNCAO was remarkably enhanced. The carbon nano-coating layer can serve as a physical and/or (electro-)chemical protection shell for the underlying LNCAO, which is attributed to an increase of the grain connectivity (physical part) and also to the protection of metal oxide from chemical reactions (chemical part).


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 40 ◽  
Author(s):  
Jun Liu ◽  
Qiming Liu ◽  
Huali Zhu ◽  
Feng Lin ◽  
Yan Ji ◽  
...  

Li-rich layered oxide cathode materials have become one of the most promising cathode materials for high specific energy lithium-ion batteries owning to its high theoretical specific capacity, low cost, high operating voltage and environmental friendliness. Yet they suffer from severe capacity and voltage attenuation during prolong cycling, which blocks their commercial application. To clarify these causes, we synthesize Li1.5Mn0.55Ni0.4Co0.05O2.5 (Li1.2Mn0.44Ni0.32Co0.04O2) with high-nickel-content cathode material by a solid-sate complexation method, and it manifests a lot slower capacity and voltage attenuation during prolong cycling compared to Li1.5Mn0.66Ni0.17Co0.17O2.5 (Li1.2Mn0.54Ni0.13Co0.13O2) and Li1.5Mn0.65Ni0.25Co0.1O2.5 (Li1.2Mn0.52Ni0.2Co0.08O2) cathode materials. The capacity retention at 1 C after 100 cycles reaches to 87.5% and the voltage attenuation after 100 cycles is only 0.460 V. Combining X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), it indicates that increasing the nickel content not only stabilizes the structure but also alleviates the attenuation of capacity and voltage. Therefore, it provides a new idea for designing of Li-rich layered oxide cathode materials that suppress voltage and capacity attenuation.


2015 ◽  
Vol 3 (1) ◽  
pp. 404-411 ◽  
Author(s):  
Xuan-Wen Gao ◽  
Yuan-Fu Deng ◽  
David Wexler ◽  
Guo-Hua Chen ◽  
Shu-Lei Chou ◽  
...  

Conductive polypyrrole (PPy)-coated LiNi0.5Mn1.5O4(LNMO) composites are applied as cathode materials in Li-ion batteries, and their electrochemical properties are explored at both room and elevated temperature.


Sign in / Sign up

Export Citation Format

Share Document