nickel content
Recently Published Documents


TOTAL DOCUMENTS

599
(FIVE YEARS 157)

H-INDEX

35
(FIVE YEARS 6)

2021 ◽  
Vol 37 (4) ◽  
Author(s):  
Paweł Wasilewski

Nickel due to its physicochemical properties is used to produce high strength, corrosion resistant, temperature resi-stant, high resistance and acid resistant alloys. Nickel in the form of fine powder can induce an allergic response when in contact with the skin, carcinogenic properties have been proven with long-term exposure to nickel dust. According to the proposed directive of the European Parliament No. 2020/0262, a value of maximum allowable concentration (MAC) in a workplace air in Poland for the inhalable fraction should be at 0.05 mg/m3 and for the respirable fraction at 0.01 mg/m3 (2020/0262/COD). The aim of this study was to develop a method for determining nickel in the range of 1/10 ÷ 2 of the MAC. The method is based on gathering nickel aerosol and its compounds contained in the air on a filter, filter mineralization in nitric acid(V) and hydrochloric acid at elevated temperature then determination of nickel content in the sample using atomic absorption spectrometry (AAS) with flame atomization. The method for the determination of nickel is presented in the form of an analytical procedure, which is included in the appendix. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Zhipeng Liu ◽  
Yishuang Yu ◽  
Jie Yang ◽  
Zhiquan Wang ◽  
Hui Guo ◽  
...  

High hardenability is of great importance to ultra-heavy steel plates and can be achieved by tailoring the composition of steel. In this study, the continuous cooling transformation (CCT) curves of two high-strength low-alloy (HSLA) steels (0.16C-0.92Ni steel and 0.12C-1.86Ni steel) were elucidated to reveal the significance of C–Ni collocation on hardenability from the perspective of morphology and crystallography. At a low cooling rate (0.5 °C/s), the 0.12C-1.86Ni steel showed higher microhardness than 0.16C-0.92Ni steel. The microstructure in 0.16C-0.92Ni steel was mainly granular bainite with block-shaped martensite/austenite islands (M/A islands), while that in 0.12C-1.86Ni steel was typically lath bainite with film-shaped M/A islands, denoting that the 0.12C-1.86Ni steel is of higher hardenability. Moreover, the 0.12C-1.86Ni steel exhibited a higher density of block boundaries, especially V1/V2 boundaries. The higher density of block boundaries resulted from the weakened variant selection due to the larger transformation driving force and more self-accommodation of transformation strain induced by the reduced carbon and increased nickel content.


2021 ◽  
Vol 100 (4) ◽  
pp. 45-51
Author(s):  
M. M. Voron ◽  

The peculiarities of cast Al-Ni-La alloys structure formation depending on the content and ratio of the main components are analyzed in the work. It is shown, that so far the studied system has been considered mainly for the creation of amorphous materials. At the same time, Al-Ni and Al-La systems have phase diagrams that allow us to consider double and triple alloys of these systems to create promising creep-resistant alloys for casting. At the same time, the peculiarities of their structure formation in this context were not determined. Samples with different contents of nickel and lanthanum were prepared for research and analyzed how each of the elements, their number and ratio affect the formation of their structural-phase state. It is shown, that low nickel content of about 2 wt. % and lanthanum up to 5 wt. % eutectic is formed like thin almost monolithic intermetallic plates. As the number of components increases and, accordingly, the number of eutectics increases, the dispersion of its components increases. The analysis of the alloy structure dependence due to studied system on their chemical composition showed that, most likely, during the formation of the eutectic, Al11La3 particles, which may have the form of nanosized fibers, are formed first of all. It should be noted that at the eutectic content of lanthanum in the alloys no primary-formed Al11La3 particles were found. This may indicate that nickel shifts the eutectic concentration of lanthanum toward higher values. At the same time, at the hypoeutectic concentration of lanthanum and the hypereutectic concentration of nickel, some Al11La3 formations were outside the regions of the main eutectic with nickel aluminide. Such questions necessitate further studies of the aluminum angle of the triple state diagram of the Al-Ni-La system. Keywords: Al-Ni-La system, creep-resistant cast aluminum alloys, structure, eutectic.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8178
Author(s):  
Lukáš Fiala ◽  
Michaela Petříková ◽  
Martin Keppert ◽  
Martin Böhm ◽  
Jaroslav Pokorný ◽  
...  

The negative environmental impact of cement production emphasizes the need to use alternative binders for construction materials. Alkali-activated slag is a more environmentally friendly candidate which can be utilized in the design of mortars with favorable material properties. However, the electrical properties of such materials are generally poor and need to be optimized by various metallic or carbon-based admixtures to gain new sophisticated material functions, such as self-sensing, self-heating, or energy harvesting. This paper investigates the influence of waste metal powder originating from the 3D printing process on the material properties of alkali-activated slag mortars. The untreated metal powder was characterized by means of XRD and SEM/EDS analyses revealing high nickel content, which was promising in terms of gaining self-heating function due to the high electrical conductivity and stability of nickel in a highly alkaline environment. The designed mortars with the waste metal admixture in the amount up to 250 wt.% to the slag and aggregates were then characterized in terms of basic physical, thermal, and electrical properties. Compared to the reference mortar, the designed mortars were of increased porosity of 17–32%. The thermal conductivity of ~1–1.1 W/m·K was at a favorable level for self-heating. However, the electrical conductivity of ~10−6 S/m was insufficient to allow the generation of the Joule heat. Even though a high amount of 3D printing waste could be used due to the good workability of mixtures, its additional treatment will be necessary to achieve reasonable, effective electrical conductivity of mortars resulting in self-heating function.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7039
Author(s):  
Jiri Hlina ◽  
Jan Reboun ◽  
Ales Hamacek

This paper is focused on copper–nickel nanoparticle resistive inks compatible with thick printed copper (TPC) technology, which can be used for power substrate manufacturing instead of conventional metallization techniques. Two types of copper–nickel inks were prepared and deposited by Aerosol Jet technology. The first type of ink was based on copper and nickel nanoparticles with a ratio of 75:25, and the second type of ink consisted of copper–nickel alloy nanoparticles with a ratio of 55:45. The characterization of electrical parameters, microstructure, thermal analysis of prepared inks and study of the influence of copper–nickel content on electrical parameters are described in this paper. It was verified that ink with a copper–nickel ratio of 55:45 (based on constantan nanoparticles) is more appropriate for the production of resistors due to low sheet resistance ~1 Ω/square and low temperature coefficient of resistance ±100·10−6 K−1 values. Copper–nickel inks can be fired in a protective nitrogen atmosphere, which ensures compatibility with copper films. The compatibility of copper–nickel and copper films enables the production of integrated resistors directly on ceramics substrates of power electronics modules made by TPC technology.


Author(s):  
Azeez Lawan Rominiyi ◽  
Mxolisi Brendon Shongwe ◽  
Enoch Nifise Ogunmuyiwa ◽  
Samson Olaitan Jeje ◽  
Smith Salifu ◽  
...  

This work investigated the dry sliding wear behaviour of spark plasma sintered (SPSed) Ti-Ni binary alloys produced at varying nickel content with alloy steel ball as the counterface material, at room temperature under varied applied normal loads. Finite element modeling was used to investigate the high-velocity impact response of the sintered alloys due to the dimensional constraint associated with SPSed samples. Microstructural analysis results revealed the presence of intermetallic phases of Ti-Ni with increasing nickel content. The best wear resistance ranging from 0.25 x 10-3 mm3/Nm to 0.22 x 10-3 mm3/Nm across all applied loads was obtained in Ti-6Ni alloy. This was attributed to the compaction of the protective triboxide and carbide layers on the surface of the sample. Oxidative and wear by adhesion were observed at low applied normal load while at high loads the prevalent wear mechanism was abrasive with reduced influence of oxidative and adhesive wear. Finite element analysis results also showed that Ti-6Ni alloy possessed the optimum combination of absorbed energy and ductility to reduce the possibility of brittle failure under impact loading. Keywords: Ti-Ni binary alloys; Spark plasma sintering; Dry sliding wear; High-velocity impact; Finite element analysis.


2021 ◽  
Vol 23 (1) ◽  
pp. 37
Author(s):  
Satrio Herbirowo ◽  
Martin Harimurti ◽  
Septian Adi Chandra ◽  
Dedi Pria Utama ◽  
Faried Miftahur Ridlo ◽  
...  

STUDY ON THE EFFECT OF COMPOSITION AND VARIATION OF Sn/Zn COOLING MEDIA ON NICKEL ALLOY STEEL THROUGH HOT FORGING AND AUSTEMPERING. Laterite steel with nickel content is expected to be a solution to overcome the lack of domestic steel availability and dependence on imports. This research was conducted to develop Nickel-Chromium-Molybdenum alloy steel used Grinding ball for cement industrial applications. Grinding ball is the one of imported steel products needed to be crushing and size reduction the ores or cement. In addition to import issues, grinding balls have a significant problem: their mechanical properties that do not meet SNI 1049 require the material to have a minimum hardness value of 45 HRC. In this study, the characteristics of Nickel alloy steel were investigated further through heat treatment of forgings heated at the austenitizing temperature of 950 °C and austempering with variations in the cooling medium of Sn/Zn solution. The cooling medium was chosen because it has a melting temperature in the phase diagram area to form the bainite microstructure with complex and challenging characteristics, both of which are required in material for grinding ball applications. In particular, the hardness value that passed the SNI 1069 standard was the use of samples with a Cr-Mo alloy of 1%-wt with a hardness value of 45.92 HRC for Sn Austemper and 48.07 HRC for Zn austemper.


2021 ◽  
Vol 882 (1) ◽  
pp. 012042
Author(s):  
Benny Anggara ◽  
Irfan Marwanza ◽  
Masagus Ahmad Azizi ◽  
Wiwik Dahani ◽  
Subandrio

Abstract Abstract. The nickel commodity is getting popular due to its role as one of the raw materials for battery manufacture. It is estimated that this trend will continue for the next 2 - 3 years and reaching its peak when the factories that process the raw material for electric vehicle batteries are established. For this reason, the nickel mining companies are competing to explore new nickel deposits. The research location is a nickel mine in Sulawesi. The purpose of this study was to determine the most suitable Nickel variogram model based on root means square error (RMSE). To obtain an accurate number of resources, it is necessary to apply an accurate and validated estimation method to gain data that are in line with the actual conditions. Therefore, this study uses a geostatistical method that takes into account the spatial relationship of each data using a variogram which is validated by the cross-validation method and RMSE. From the results of the RSME analysis, the most suitable variogram model for nickel content in the limonite and saprolite layers is the exponential variogram model. In addition, the values of root mean square error for nickel content in the limonite and saprolite layers were 0.022 and 0.098 respectively.


Sign in / Sign up

Export Citation Format

Share Document