scholarly journals Longitudinal plasma amyloid beta in Alzheimer's disease clinical trials

2014 ◽  
Vol 11 (9) ◽  
pp. 1069-1079 ◽  
Author(s):  
Michael C. Donohue ◽  
Setareh H. Moghadam ◽  
Allyson D. Roe ◽  
Chung-Kai Sun ◽  
Steven D. Edland ◽  
...  
2020 ◽  
Vol 21 (2) ◽  
pp. 148-166 ◽  
Author(s):  
Dileep Vijayan ◽  
Remya Chandra

Alzheimer’s disease (AD) is one of the most common forms of dementia and has been a global concern for several years. Due to the multi-factorial nature of the disease, AD has become irreversible, fatal and imposes a tremendous socio-economic burden. Even though experimental medicines suggested moderate benefits, AD still lacks an effective treatment strategy for the management of symptoms or cure. Among the various hypotheses that describe development and progression of AD, the amyloid hypothesis has been a long-term adherent to the AD due to the involvement of various forms of Amyloid beta (Aβ) peptides in the impairment of neuronal and cognitive functions. Hence, majority of the drug discovery approaches in the past have focused on the prevention of the accumulation of Aβ peptides. Currently, there are several agents in the phase III clinical trials that target Aβ or the various macromolecules triggering Aβ deposition. In this review, we present the state of the art knowledge on the functional aspects of the key players involved in the amyloid hypothesis. Furthermore, we also discuss anti-amyloid agents present in the Phase III clinical trials.


2012 ◽  
Vol 119 (7) ◽  
pp. 843-850 ◽  
Author(s):  
Robert A. Rissman ◽  
John Q. Trojanowski ◽  
Leslie M. Shaw ◽  
Paul S. Aisen

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1012 ◽  
Author(s):  
Ilijana Begcevic ◽  
Magda Tsolaki ◽  
Davor Brinc ◽  
Marshall Brown ◽  
Eduardo Martinez-Morillo ◽  
...  

Background: Alzheimer’s disease (AD) is the most common type of dementia, with progressive onset of clinical symptoms. The main pathological hallmarks are brain deposits of extracellular amyloid beta plaques and intracellular neurofibrillary tangles (NFT). Cerebrospinal fluid reflects pathological changes in the brain; amyloid beta 1-42 is a marker of amyloid plaques, while total and phosphorylated tau are markers of NFT formation. Additional biomarkers associated with disease pathogenesis are needed, for better prognosis, more specific diagnosis, prediction of disease severity and progression and for improved patient classification in clinical trials. The aim of the present study was to evaluate brain-specific proteins as potential biomarkers of progression of AD. Methods: Overall, 30 candidate proteins were quantified in cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment (MCI) and mild, moderate and severe AD dementia (n=101) using mass spectrometry-based selected reaction monitoring assays. ELISA was used for neuronal pentraxin receptor-1 (NPTXR) confirmation. Results: The best discrimination between MCI and more advanced AD stages (moderate and severe dementia) was observed for protein NPTXR (area under the curve, AUC=0.799). A statistically different abundance of this protein was observed between the two groups, with severe AD patients having progressively lower levels (p<0.05). ELISA confirmed lower levels in AD, in a separate cohort that included controls, MCI and AD patients. Conclusions: We conclude that NPTXR protein in CSF is a novel potential biomarker of AD progression and could have important utility in assessing treatment success in clinical trials.


2002 ◽  
Vol 38 ◽  
pp. 37-49 ◽  
Author(s):  
Janelle Nunan ◽  
David H Small

The proteolytic processing of the amyloid-beta protein precursor plays a key role in the development of Alzheimer's disease. Cleavage of the amyloid-beta protein precursor may occur via two pathways, both of which involve the action of proteases called secretases. One pathway, involving beta- and gamma-secretase, liberates amyloid-beta protein, a protein associated with the neurodegeneration seen in Alzheimer's disease. The alternative pathway, involving alpha-secretase, precludes amyloid-beta protein formation. In this review, we describe the progress that has been made in identifying the secretases and their potential as therapeutic targets in the treatment or prevention of Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document