P1-007: Association of FDG-PET Brain Metabolism with Alzheimer’s Disease Risk Genes

2016 ◽  
Vol 12 ◽  
pp. P399-P400
Author(s):  
Eddie Stage ◽  
Tugce Duran ◽  
Shannon L. Risacher ◽  
Naira Goukasian ◽  
Triet Do ◽  
...  
2016 ◽  
Vol 12 ◽  
pp. P52-P53 ◽  
Author(s):  
Eddie Stage ◽  
Tugce Duran ◽  
Shannon L. Risacher ◽  
Naira Goukasian ◽  
Triet Do ◽  
...  

2021 ◽  
Author(s):  
Jielin Xu ◽  
Yuan Hou ◽  
Yadi Zhou ◽  
Ming Hu ◽  
Feixiong Cheng

Human genome sequencing studies have identified numerous loci associated with complex diseases, including Alzheimer's disease (AD). Translating human genetic findings (i.e., genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery, however, remains a major challenge. To address this critical problem, we present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). NETTAG is capable of integrating multi-genomics data along with the protein-protein interactome to infer putative risk genes and drug targets impacted by GWAS loci. Specifically, we leverage non-coding GWAS loci effects on expression quantitative trait loci (eQTLs), histone-QTLs, and transcription factor binding-QTLs, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions. The key premises of NETTAG are that the disease risk genes exhibit distinct functional characteristics compared to non-risk genes and therefore can be distinguished by their aggregated genomic features under the human protein interactome. Applying NETTAG to the latest AD GWAS data, we identified 156 putative AD-risk genes (i.e., APOE, BIN1, GSK3B, MARK4, and PICALM). We showed that predicted risk genes are: 1) significantly enriched in AD-related pathobiological pathways, 2) more likely to be differentially expressed regarding transcriptome and proteome of AD brains, and 3) enriched in druggable targets with approved medicines (i.e., choline and ibudilast). In summary, our findings suggest that understanding of human pathobiology and therapeutic development could benefit from a network-based deep learning methodology that utilizes GWAS findings under the multimodal genomic analyses.


2016 ◽  
Vol 68 (6) ◽  
pp. 1345-1349 ◽  
Author(s):  
Marzena Ułamek-Kozioł ◽  
Ryszard Pluta ◽  
Sławomir Januszewski ◽  
Janusz Kocki ◽  
Anna Bogucka-Kocka ◽  
...  

2010 ◽  
Vol 21 (3) ◽  
pp. 763-767 ◽  
Author(s):  
Timo Sarajärvi ◽  
Seppo Helisalmi ◽  
Leila Antikainen ◽  
Petra Mäkinen ◽  
Anne Maria Koivisto ◽  
...  

2016 ◽  
Vol 12 ◽  
pp. P722-P723
Author(s):  
Tugce Duran ◽  
Shannon L. Risacher ◽  
Naira Goukasian ◽  
Triet Do ◽  
Kwangsik Nho ◽  
...  

2012 ◽  
Vol 169 (9) ◽  
pp. 954-962 ◽  
Author(s):  
Robert A. Sweet ◽  
Howard Seltman ◽  
James E. Emanuel ◽  
Oscar L. Lopez ◽  
James T. Becker ◽  
...  

2013 ◽  
Vol 9 ◽  
pp. P179-P179
Author(s):  
Brit-Maren Schjeide ◽  
Fran Borovecki ◽  
Jordi Clarimón ◽  
Frank Faltraco ◽  
Vilmantas Giedraitis ◽  
...  

2016 ◽  
Vol 25 (16) ◽  
pp. 3467-3475 ◽  
Author(s):  
Silvia S. Kang ◽  
Aishe Kurti ◽  
Aleksandra Wojtas ◽  
Kelsey E. Baker ◽  
Chia-Chen Liu ◽  
...  

2016 ◽  
Vol 12 ◽  
pp. P712-P713
Author(s):  
Liana G. Apostolova ◽  
Naira Goukasian ◽  
Shannon L. Risacher ◽  
Tugce Duran ◽  
John D. West ◽  
...  

2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Xuewen Xiao ◽  
Bin Jiao ◽  
Zhenhua Yuan ◽  
Xinxin Liao ◽  
Beisha Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document