Random noise suppression and parameter estimation for Magnetic Resonance Sounding signal based on maximum likelihood estimation

2020 ◽  
Vol 176 ◽  
pp. 104007
Author(s):  
Fan Li ◽  
Kai-tian Li ◽  
Kai Lu ◽  
Zhen-yu Li
2019 ◽  
Vol 11 (15) ◽  
pp. 1829 ◽  
Author(s):  
Yao ◽  
Zhang ◽  
Yu ◽  
Zhao ◽  
Sun

The magnetic resonance sounding (MRS) method is a non-invasive, efficient and advanced geophysical method for groundwater detection. However, the MRS signal received by the coil sensor is extremely susceptible to electromagnetic noise interference. In MRS data processing, random noise suppression of noisy MRS data is an important research aspect. We propose an approach for intensive sampling sparse reconstruction (ISSR) and kernel regression estimation (KRE) to suppress random noise. The approach is based on variable frequency sampling, numerical integration and statistical signal processing combined with kernel regression estimation. In order to realize the approach, we proposed three specific sparse reconstructions, namely rectangular sparse reconstruction, trapezoidal sparse reconstruction and Simpson sparse reconstruction. To solve the distortion of peaks and valleys after sparse reconstruction, we introduced the KRE to deal with the processed data by the ISSR. Further, the simulation and field experiments demonstrate that the ISSR-KRE approach is a feasible and effective way to suppress random noise. Besides, we find that rectangular sparse reconstruction and trapezoidal sparse reconstruction are superior to Simpson sparse reconstruction in terms of noise suppression effect, and sampling frequency is positively correlated with signal-to-noise improvement ratio (SNIR). In one case of field experiment, the standard deviation of noisy MRS data was reduced from 1200.80 nV to 570.01 nV by the ISSR-KRE approach. The proposed approach provides theoretical support for random noise suppression and contributes to the development of MRS instrument with low power consumption and high efficiency. In the future, we will integrate the approach into MRS instrument and attempt to utilize them to eliminate harmonic noise from power line.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yifan Sun ◽  
Xiang Xu

As a widely used inertial device, a MEMS triaxial accelerometer has zero-bias error, nonorthogonal error, and scale-factor error due to technical defects. Raw readings without calibration might seriously affect the accuracy of inertial navigation system. Therefore, it is necessary to conduct calibration processing before using a MEMS triaxial accelerometer. This paper presents a MEMS triaxial accelerometer calibration method based on the maximum likelihood estimation method. The error of the MEMS triaxial accelerometer comes into question, and the optimal estimation function is established. The calibration parameters are obtained by the Newton iteration method, which is more efficient and accurate. Compared with the least square method, which estimates the parameters of the suboptimal estimation function established under the condition of assuming that the mean of the random noise is zero, the parameters calibrated by the maximum likelihood estimation method are more accurate and stable. Moreover, the proposed method has low computation, which is more functional. Simulation and experimental results using the consumer low-cost MEMS triaxial accelerometer are presented to support the abovementioned superiorities of the maximum likelihood estimation method. The proposed method has the potential to be applied to other triaxial inertial sensors.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Fan Yang ◽  
Hu Ren ◽  
Zhili Hu

The maximum likelihood estimation is a widely used approach to the parameter estimation. However, the conventional algorithm makes the estimation procedure of three-parameter Weibull distribution difficult. Therefore, this paper proposes an evolutionary strategy to explore the good solutions based on the maximum likelihood method. The maximizing process of likelihood function is converted to an optimization problem. The evolutionary algorithm is employed to obtain the optimal parameters for the likelihood function. Examples are presented to demonstrate the proposed method. The results show that the proposed method is suitable for the parameter estimation of the three-parameter Weibull distribution.


2016 ◽  
Vol 11 (5) ◽  
pp. 913-920 ◽  
Author(s):  
P. V. Sudeep ◽  
P. Palanisamy ◽  
Chandrasekharan Kesavadas ◽  
Jan Sijbers ◽  
Arnold J. den Dekker ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96386 ◽  
Author(s):  
Yang Chen ◽  
Jian Yang ◽  
Huazhong Shu ◽  
Luyao Shi ◽  
Jiasong Wu ◽  
...  

Author(s):  
Jie Xiao ◽  
Bohdan Kulakowski

This study aims at establishing an accurate yet efficient parameter estimation strategy for developing dynamic vehicle models that can be easily implemented for simulation and controller design purposes. Generally, conventional techniques such as Least Square Estimation (LSE), Maximum Likelihood Estimation (MLE), and Instrumental Variable Methods (IVM), can deliver sufficient estimation results for given models that are linear-in-the-parameter. However, many identification problems in the engineering world are very complex in nature and are quite difficult to solve by those techniques. For the nonlinear-in-the-parameter models, it is almost impossible to find an analytical solution. As a result, numerical algorithms have to be used in calculating the estimates. In the area of model parameter estimation for motor vehicles, most studies performed so far have been limited either to the linear-in-the-parameter models, or in their ability to handle multi-modal error surfaces. For models with nondifferentiable cost functions, the conventional methods will not be able to locate the optimal estimates of the unknown parameters. This concern naturally leads to the exploration of other search techniques. In particular, Genetic Algorithms (GAs), as population-based global optimization techniques that emulate natural genetic operators, have been introduced into the field of parameter estimation. In this paper, hybrid parameter estimation technique is developed to improve computational efficiency and accuracy of pure GA-based estimation. The proposed strategy integrates a GA and the Maximum Likelihood Estimation. Choices of input signals and estimation criterion are discussed involving an extensive sensitivity analysis. Experiment-related aspects, such as imperfection of data acquisition, are also considered. Computer simulation results reveal that the hybrid parameter estimation method proposed in this study shows great potential to outperform conventional techniques and pure GAs in accuracy, efficiency, as well as robustness with respect to the initial guesses and measurement uncertainty. Primary experimental validation is also implemented including interpretation and processing of field test data, as well as analysis of errors associated with aspects of experiment design. To provide more guidelines for implementing the hybrid GA approach, some practical guidelines on application of the proposed parameter estimation strategy are discussed.


Sign in / Sign up

Export Citation Format

Share Document