Recovering the total magnetization direction using a novel stable reduction to the pole filter (RTP)

2020 ◽  
Vol 182 ◽  
pp. 104182
Author(s):  
V.B. Ribeiro
2014 ◽  
Vol 1 (2) ◽  
pp. 1465-1507
Author(s):  
V. C. Oliveira ◽  
D. P. Sales ◽  
V. C. F. Barbosa ◽  
L. Uieda

Abstract. We have developed a fast total-field anomaly inversion to estimate the magnetization direction of multiple sources with approximately spherical shape and known centres. Our method can be applied to interpret multiple sources with different magnetization directions. It neither requires the prior computation of any transformation like reduction to the pole nor the use of regularly spaced data on a horizontal grid. The method contains flexibility to be implemented as a linear or non-linear inverse problem, which results, respectively, in a least-squares or robust estimate of the components of the magnetization vector of the sources. Applications to synthetic data show the robustness of our method against interfering anomalies and errors in the location of the sources' centre. Besides, we show the feasibility of applying the upward continuation to interpret non-spherical sources. Applications to field data over the Goiás Alkaline Province (GAP), Brazil, show the good performance of our method in estimating geological meaningful magnetization directions. The results obtained for a region of the GAP, near from the alkaline complex of Diorama, suggest the presence of non-outcropping sources marked by strong remanent magnetization with inclination and declination close to -70.35° and -19.81°, respectively. This estimated magnetization direction leads to predominantly positive reduced-to-the-pole anomalies, even for other region of the GAP, in the alkaline complex of Montes Claros de Goiás. These results show that the non-outcropping sources near from the alkaline complex of Diorama have almost the same magnetization direction of that ones in the alkaline complex of Montes Claros de Goiás, strongly suggesting that these sources have emplaced the crust almost within the same geological time interval.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. J59-J70 ◽  
Author(s):  
Nelson Ribeiro-Filho ◽  
Rodrigo Bijani ◽  
Cosme Ponte-Neto

Knowledge of the total magnetization direction of geologic sources is valuable for interpretation of magnetic anomalies. Although the magnetization direction of causative sources is assumed to be induced by the ambient magnetic field, the presence of remanence should not be neglected. An existing method of correlating total and vertical gradients of the reduced-to-the-pole (RTP) anomaly estimates the total magnetization direction well. However, due to the numerical instability of RTP transformation in the Fourier domain, an assumption should be considered for dealing with inclination values at approximately 0°. We have adopted an extension to the standard crosscorrelation method for estimating the total magnetization direction vector, computing the RTP anomaly by means of the classic equivalent layer technique for low inclination values. Additionally, an ideal number of equivalent sources within the layer is considered for reducing the computational demands. To investigate the relevant aspects of the adopted method, two simple synthetic scenarios are presented. First, a magnetic anomaly produced by a homogeneous and isolated vertical dike is considered. This test illustrates the good performance of the adopted approach, finding the true magnetization direction, even for low inclination values. In the second synthetic test, a long-wavelength component is added to the previous magnetic total-field anomaly. In this case, the method adopted here fails to estimate a reliable magnetization direction vector, showing weak performance for strong interfering magnetic anomalies. On the real data example, the application tests an isolated total-field anomaly of the Carajás Mineral Province, in northern Brazil, where the inclination of the ambient magnetic field is close to zero. The obtained results indicate weak remanence in the estimated total magnetization direction vector, which would never be reached in the standard formulation of the crosscorrelation technique.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. L67-L73 ◽  
Author(s):  
Fernando Guspí ◽  
Iván Novara

We have developed an equivalent-source method for performing reduction to the pole and related transforms from magnetic data measured on unevenly spaced stations at different elevations. The equivalent source is composed of points located vertically beneath the measurement stations, and their magnetic properties are chosen in such a way that the reduced-to-the-pole magnetic field generated by them is represented by an inverse-distance Newtonian potential. This function, which attenuates slowly with distance, provides better coverage for discrete data points. The magnetization intensity is determined iteratively until the observed field is fitted within a certain tolerance related to the level of noise; thus, advantages in computer time are gained over the resolution of large systems of equations. In the case of induced magnetization, the iteration converges well for verticalor horizontal inclinations, and results are stable if noise is taken into account properly. However, for a range of intermediate inclinations near 35°, a factor tending to zero makes it necessary to perform the reduction through a two-stage procedure, using an auxiliary magnetization direction, without significantly affecting the speed and stability of the method. The performance of the procedure was tested on a synthetic example based on a field generated on randomly scattered stations by a random set of magnetic dipoles, contaminated with noise, which is reduced to the pole for three different magnetization directions. Results provide a good approximation to the theoretical reduced-to-the-pole field using a one- or a two-stage reduction, showing minor noise artifacts when the direction is nearly horizontal. In a geophysical example with real data, the reduction to the pole was used to correct the estimated magnetization direction that originates an isolated anomaly over Sierra de San Luis, Argentina.


2015 ◽  
Vol 22 (2) ◽  
pp. 215-232 ◽  
Author(s):  
V. C. Oliveira ◽  
D. P. Sales ◽  
V. C. F. Barbosa ◽  
L. Uieda

Abstract. We have developed a fast total-field anomaly inversion to estimate the magnetization direction of multiple sources with approximately spherical shapes and known centres. Our method is an overdetermined inverse problem that can be applied to interpret multiple sources with different but homogeneous magnetization directions. It requires neither the prior computation of any transformation-like reduction to the pole nor the use of regularly spaced data on a horizontal grid. The method contains flexibility to be implemented as a linear or non-linear inverse problem, which results, respectively, in a least-squares or robust estimate of the components of the magnetization vector of the sources. Applications to synthetic data show the robustness of our method against interfering anomalies and errors in the location of the sources' centre. Besides, we show the feasibility of applying the upward continuation to interpret non-spherical sources. Applications to field data over the Goiás alkaline province (GAP), Brazil, show the good performance of our method in estimating geologically meaningful magnetization directions. The results obtained for a region of the GAP, near to the alkaline complex of Diorama, suggest the presence of non-outcropping sources marked by strong remanent magnetization with inclination and declination close to −70.35 and −19.81°, respectively. This estimated magnetization direction leads to predominantly positive reduced-to-the-pole anomalies, even for other region of the GAP, in the alkaline complex of Montes Claros de Goiás. These results show that the non-outcropping sources near to the alkaline complex of Diorama have almost the same magnetization direction of those ones in the alkaline complex of Montes Claros de Goiás, strongly suggesting that these sources have been emplaced in the crust within almost the same geological time interval.


Sign in / Sign up

Export Citation Format

Share Document