Improving the crosscorrelation method to estimate the total magnetization direction vector of isolated sources: A space-domain approach for unstable inclination values

Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. J59-J70 ◽  
Author(s):  
Nelson Ribeiro-Filho ◽  
Rodrigo Bijani ◽  
Cosme Ponte-Neto

Knowledge of the total magnetization direction of geologic sources is valuable for interpretation of magnetic anomalies. Although the magnetization direction of causative sources is assumed to be induced by the ambient magnetic field, the presence of remanence should not be neglected. An existing method of correlating total and vertical gradients of the reduced-to-the-pole (RTP) anomaly estimates the total magnetization direction well. However, due to the numerical instability of RTP transformation in the Fourier domain, an assumption should be considered for dealing with inclination values at approximately 0°. We have adopted an extension to the standard crosscorrelation method for estimating the total magnetization direction vector, computing the RTP anomaly by means of the classic equivalent layer technique for low inclination values. Additionally, an ideal number of equivalent sources within the layer is considered for reducing the computational demands. To investigate the relevant aspects of the adopted method, two simple synthetic scenarios are presented. First, a magnetic anomaly produced by a homogeneous and isolated vertical dike is considered. This test illustrates the good performance of the adopted approach, finding the true magnetization direction, even for low inclination values. In the second synthetic test, a long-wavelength component is added to the previous magnetic total-field anomaly. In this case, the method adopted here fails to estimate a reliable magnetization direction vector, showing weak performance for strong interfering magnetic anomalies. On the real data example, the application tests an isolated total-field anomaly of the Carajás Mineral Province, in northern Brazil, where the inclination of the ambient magnetic field is close to zero. The obtained results indicate weak remanence in the estimated total magnetization direction vector, which would never be reached in the standard formulation of the crosscorrelation technique.

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. D429-D444 ◽  
Author(s):  
Shuang Liu ◽  
Xiangyun Hu ◽  
Tianyou Liu ◽  
Jie Feng ◽  
Wenli Gao ◽  
...  

Remanent magnetization and self-demagnetization change the magnitude and direction of the magnetization vector, which complicates the interpretation of magnetic data. To deal with this problem, we evaluated a method for inverting the distributions of 2D magnetization vector or effective susceptibility using 3C borehole magnetic data. The basis for this method is the fact that 2D magnitude magnetic anomalies are not sensitive to the magnetization direction. We calculated magnitude anomalies from the measured borehole magnetic data in a spatial domain. The vector distributions of magnetization were inverted methodically in two steps. The distributions of magnetization magnitude were initially solved based on magnitude magnetic anomalies using the preconditioned conjugate gradient method. The preconditioner determined by the distances between the cells and the borehole observation points greatly improved the quality of the magnetization magnitude imaging. With the calculated magnetization magnitude, the distributions of magnetization direction were computed by fitting the component anomalies secondly using the conjugate gradient method. The two-step approach made full use of the amplitude and phase anomalies of the borehole magnetic data. We studied the influence of remanence and demagnetization based on the recovered magnetization intensity and direction distributions. Finally, we tested our method using synthetic and real data from scenarios that involved high susceptibility and complicated remanence, and all tests returned favorable results.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Chong Kang ◽  
Liming Fan ◽  
Quan Zheng ◽  
Xiyuan Kang ◽  
Jian Zhou ◽  
...  

In the method of target localization based on magnetic anomalies, the scheme of vector field localization and experimental research are significant. Because more information of magnetic field can be measured by vector sensors, the position of the target can be directly calculated by the equations. However, the vector magnetic anomaly generated by the target is difficult to measure. And the detection range is small due to the low sensitivity of vector sensors. A method for target localization based on the total geomagnetic field is proposed. Its advantages are that the measurement of total magnetic field is not affected by the orientation of the total field sensors and the detection range is large due to their high sensitivity. In this paper, we focus on the localization using the array with the total field magnetometers. And we design an array structure with the total field magnetometers. Then, we obtain the higher order nonlinear equations for the target localization based on this array. The numerical method is used to solve the equations. Meanwhile, we present a method for eliminating the effect of geomagnetic field variations and uneven spatial distribution. In suburban roads, localization experiments were carried out. And the results showed that the relative error of target localization is less than 5% by using the proposed method.


Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Liming Fan ◽  
Xiyuan Kang ◽  
Quan Zheng ◽  
Xiaojun Zhang ◽  
Xuejun Liu ◽  
...  

Purpose This paper aims to focus on the tracking of a moving magnetic target by using total field magnetometers and to present a tracking method based on the gradient of a magnetic anomaly. In the tracking, it is assumed that the motion of the target is equivalent to a first-order Markov process. And the unit direction vector of the magnetic moment from the gradient of the magnetic anomaly can be obtained. According to the unit direction vector, the inverse problem is turned into an optimization problem to estimate the parameters of the target. The particle swarm optimization algorithm is used to solve this optimization problem. The proposed method is validated by the numerical simulation and real data. The parameters of the target can be calculated rapidly using the proposed method. And the results show that the estimated parameters of the mobile target using the proposed method are very close to the true values. Design/methodology/approach The authors focus on the tracking of a moving magnetic target by using total field magnetometers and present a tracking method based on the gradient of a magnetic anomaly. Findings The paper provides an effective method for tracking the magnetic target based on an array with total field sensors. Originality/value Comparing with a vector magnetic sensor, the measurement of the scalar magnetic sensor is almost not influenced by its orientation. In this paper, a moving magnetic target was tracked by using total field magnetometers and a tracking method presented based on the gradient of a magnetic anomaly.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. L21-L30 ◽  
Author(s):  
Soraya Lozada Tuma ◽  
Carlos Alberto Mendonça

We present a three-step magnetic inversion procedure in which invariant quantities with respect to source parameters are inverted sequentially to give (1) shape cross section, (2) magnetization intensity, and (3) magnetization direction for a 2D (elongated) magnetic source. The quantity first inverted (called here the shape function) is obtained from the ratio of the gradient intensity of the total-field anomaly to the intensity of the anomalous vector field. For homogenous sources, the shape function is invariant with source magnetization and allows reconstruction of the source geometry by attributing an arbitrary magnetization to trial solutions. Once determined, the source shape is fixed and magnetization intensity is estimated by fitting the total gradient of the total-field anomaly (equivalent to the amplitude of the analytic signal of magnetic anomaly). Finally, the source shape and magnetization intensity are fixed and the magnetization direction is determined by fitting the magnetic anomaly. As suggested by numerical modeling and real data application, stepped inversion allows checking whether causative sources are homogeneous. This is possible because the shape function from inhomogeneous sources can be fitted by homogeneous models, but a model obtained in this way fits neither the total gradient of the magnetic anomaly nor the magnetic anomaly itself. Such a criterion seems effective in recognizing strongly inhomogeneous sources. Stepped inversion is tested with numerical experiments, and is used to model a magnetic anomaly from intrusive basic rocks from the Paraná Basin, Brazil.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. J99-J110
Author(s):  
André L. A. Reis ◽  
Vanderlei C. Oliveira Jr. ◽  
Valéria C. F. Barbosa

It is known from the potential theory that a continuous and planar layer of dipoles can exactly reproduce the total-field anomaly produced by arbitrary 3D sources. We have proven the existence of an equivalent layer having an all-positive magnetic-moment distribution for the case in which the magnetization direction of this layer is the same as that of the true sources, regardless of whether the magnetization of the true sources is purely induced or not. By using this generalized positivity constraint, we have developed a new iterative method for estimating the total magnetization direction of 3D magnetic sources based on the equivalent-layer technique. Our method does not impose a priori information about the shape or the depth of the sources, does not require regularly spaced data, and presumes that the sources have a uniform magnetization direction. At each iteration, our method performs two steps. The first step solves a constrained linear inverse problem to estimate a positive magnetic-moment distribution over a discrete equivalent layer of dipoles. We consider that the equivalent sources are located on a plane and have a uniform and fixed magnetization direction. In the second step, we use the estimated magnetic-moment distribution and solve a nonlinear inverse problem for estimating a new magnetization direction for the dipoles. The algorithm stops when the equivalent layer yields a total-field anomaly that fits the observed data. Tests with synthetic data simulating different geologic scenarios show that the final estimated magnetization direction is close to the true one. We apply our method to field data from the Goiás alkaline province, over the Montes Claros complex, in the center of Brazil. The results suggest the presence of intrusions with remarkable remanent magnetization, in agreement with the current literature for this region.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. L67-L73 ◽  
Author(s):  
Fernando Guspí ◽  
Iván Novara

We have developed an equivalent-source method for performing reduction to the pole and related transforms from magnetic data measured on unevenly spaced stations at different elevations. The equivalent source is composed of points located vertically beneath the measurement stations, and their magnetic properties are chosen in such a way that the reduced-to-the-pole magnetic field generated by them is represented by an inverse-distance Newtonian potential. This function, which attenuates slowly with distance, provides better coverage for discrete data points. The magnetization intensity is determined iteratively until the observed field is fitted within a certain tolerance related to the level of noise; thus, advantages in computer time are gained over the resolution of large systems of equations. In the case of induced magnetization, the iteration converges well for verticalor horizontal inclinations, and results are stable if noise is taken into account properly. However, for a range of intermediate inclinations near 35°, a factor tending to zero makes it necessary to perform the reduction through a two-stage procedure, using an auxiliary magnetization direction, without significantly affecting the speed and stability of the method. The performance of the procedure was tested on a synthetic example based on a field generated on randomly scattered stations by a random set of magnetic dipoles, contaminated with noise, which is reduced to the pole for three different magnetization directions. Results provide a good approximation to the theoretical reduced-to-the-pole field using a one- or a two-stage reduction, showing minor noise artifacts when the direction is nearly horizontal. In a geophysical example with real data, the reduction to the pole was used to correct the estimated magnetization direction that originates an isolated anomaly over Sierra de San Luis, Argentina.


2014 ◽  
Vol 644-650 ◽  
pp. 3459-3462 ◽  
Author(s):  
Lei Shi ◽  
Liang Hui Guo ◽  
Feng Yi Guo

Processing and interpretation of magnetic data usually require information of total magnetization direction. However, under the effects of remanent magnetization, total magnetization direction is different from induced magnetization direction, which makes data processing and interpretation complexity. In this paper, we present a new method by cross-correlation of magnetic dipole source for determination of magnetization direction from relatively isolated and approximate equiaxial-shape magnetic total field anomaly. This method calculates cross-correlation coefficient between observed magnetic total field anomaly and theoretical magnetic total field anomaly caused by a magnetic dipole source, by using a set of varying parameters of positions and total magnetization direction of dipole source for trial and error. The corresponding magnetization direction of maximum correlation coefficient is regarded as estimated total magnetization direction. Test on synthetic data indicates that this method reliably and effectively estimates the magnetization direction from relatively isolated and approximate equiaxial-shape magnetic total field anomaly.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. J75-J85 ◽  
Author(s):  
Henglei Zhang ◽  
Dhananjay Ravat ◽  
Yára R. Marangoni ◽  
Guoxiong Chen ◽  
Xiangyun Hu

The knowledge of total magnetization (magnitude and direction) makes it easier to interpret magnetic anomalies. We have developed a simple crosscorrelation-based method to determine the total magnetization direction of a magnetic source from the vertical derivative of normalized source strength (dNSS) and the reduced-to-pole (RTP) magnetic fields. For most source types, the spread of the dNSS field (or its half-width) is similar to that of the RTP field computed with the correct total magnetization direction, and, thus, the comparison results in a more meaningful correlation coefficient than other functions used in the literature. We have determined the utility of our method using several compact source types (i.e., sphere, dike, horizontal sheet, vertical and horizontal cylinders, and prism). Moreover, the existing methods for determining the direction can be unstable at low latitudes due to noise amplification. A filter that isolates the main features of the anomaly of interest, when applied to both the fields being correlated, improves the performance of the method. We also implement a stabilizing amplitude threshold filter that made the method stable at low latitudes. Model tests indicate that our method estimates the total magnetization directions accurately for low inclinations of total magnetization and inducing field directions. We applied the method to estimate the total magnetization direction of magnetic anomalies in the north and central part of the Goiás Alkaline Province in central Brazil. The RTP fields from the total magnetization directions derived from our method meet the expectations of anomaly symmetry and centering on the outcrops or the edges of the alkaline intrusive bodies. In addition, we found that the resulting magnetic and gravity models of the Goiás Alkaline intrusives were consistent with the geologic model of inverted conical diatremes.


Sign in / Sign up

Export Citation Format

Share Document