On the ionospheric propagation of VLF waves generated by currents in the lower ionosphere

2018 ◽  
Vol 179 ◽  
pp. 138-148 ◽  
Author(s):  
I.V. Kuzichev ◽  
I. Yu. Vasko ◽  
A. Yu. Malykhin ◽  
A.R. Soto-Chavez
Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 676
Author(s):  
Dimitrios Z. Politis ◽  
Stelios M. Potirakis ◽  
Yiannis F. Contoyiannis ◽  
Sagardweep Biswas ◽  
Sudipta Sasmal ◽  
...  

In this work we present the statistical and criticality analysis of the very low frequency (VLF) sub-ionospheric propagation data recorded by a VLF/LF radio receiver which has recently been established at the University of West Attica in Athens (Greece). We investigate a very recent, strong (M6.9), and shallow earthquake (EQ) that occurred on 30 October 2020, very close to the northern coast of the island of Samos (Greece). We focus on the reception data from two VLF transmitters, located in Turkey and Israel, on the basis that the EQ’s epicenter was located within or very close to the 5th Fresnel zone, respectively, of the corresponding sub-ionospheric propagation path. Firstly, we employed in our study the conventional analyses known as the nighttime fluctuation method (NFM) and the terminator time method (TTM), aiming to reveal any statistical anomalies prior to the EQ’s occurrence. These analyses revealed statistical anomalies in the studied sub-ionospheric propagation paths within ~2 weeks and a few days before the EQ’s occurrence. Secondly, we performed criticality analysis using two well-established complex systems’ time series analysis methods—the natural time (NT) analysis method, and the method of critical fluctuations (MCF). The NT analysis method was applied to the VLF propagation quantities of the NFM, revealing criticality indications over a period of ~2 weeks prior to the Samos EQ, whereas MCF was applied to the raw receiver amplitude data, uncovering the time excerpts of the analyzed time series that present criticality which were closest before the Samos EQ. Interestingly, power-law indications were also found shortly after the EQ’s occurrence. However, it is shown that these do not correspond to criticality related to EQ preparation processes. Finally, it is noted that no other complex space-sourced or geophysical phenomenon that could disturb the lower ionosphere did occur during the studied time period or close after, corroborating the view that our results prior to the Samos EQ are likely related to this mainshock.


2004 ◽  
Vol 22 (7) ◽  
pp. 2643-2653 ◽  
Author(s):  
M. Platino ◽  
U. S. Inan ◽  
T. F. Bell ◽  
J. Pickett ◽  
E. J. Kennedy ◽  
...  

Abstract. It is now well known that amplitude modulated HF transmissions into the ionosphere can be used to generate ELF/VLF signals using the so-called "electrojet antenna". Although most observations of the generated ELF/VLF signals have been made on the ground, several low and high-altitude satellite observations have also been reported (James et al., 1990). One of the important unknowns in the physics of ELF/VLF wave generation by ionospheric heating is the volume of the magnetosphere illuminated by the ELF/VLF waves. In an attempt to investigate this question further, ground-satellite conjunction experiments have recently been conducted using the four Cluster satellites and the HF heater of the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. Being located on largely closed field lines at L≈4.9, HAARP is currently also being used for ground-to-ground type of ELF/VLF wave-injection experiments, and will be increasingly used for this purpose as it is now being upgraded for higher power operation. In this paper, we describe the HAARP installation and present recent results of the HAARP-Cluster experiments. We give an overview of the detected ELF/VLF signals at Cluster, and a possible explanation of the spectral signature detected, as well as the determination of the location of the point of injection of the HAARP ELF/VLF signals into the magnetosphere using ray tracing.


2021 ◽  
Author(s):  
Jorge Samanes ◽  
Jose Gamonal ◽  
Emilia Correia ◽  
Ricardo Y. C. Cueva

2011 ◽  
Vol 116 (A6) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. B. Cohen ◽  
U. S. Inan ◽  
D. Piddyachiy ◽  
N. G. Lehtinen ◽  
M. Gołkowski

2020 ◽  
Vol 65 (9) ◽  
pp. 2148-2157
Author(s):  
Rok Vogrinčič ◽  
Alejandro Lara ◽  
Andrea Borgazzi ◽  
Jean Pierre Raulin

Sign in / Sign up

Export Citation Format

Share Document