scholarly journals cAMP is an allosteric modulator of DNA binding specificity in cAMP receptor protein from Mycobacterium tuberculosis

2021 ◽  
pp. 100480
Author(s):  
Fernanda Gárate ◽  
Stephen Dokas ◽  
Maria Fe Lanfranco ◽  
Clare Canavan ◽  
Irina Wang ◽  
...  
Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2749-2756 ◽  
Author(s):  
Nisheeth Agarwal ◽  
Tirumalai R. Raghunand ◽  
William R. Bishai

The wbl (whiB-like) genes encode putative transcription factors unique to actinomycetes. This study characterized the promoter element of one of the seven wbl genes of Mycobacterium tuberculosis, whiB1 (Rv3219c). The results reveal that whiB1 is transcribed by a class I-type cAMP receptor protein (CRP)-dependent promoter, harbouring a CRP-binding site positioned at −58.5 with respect to its transcription start point. In vivo promoter activity analysis and electrophoretic mobility shift assays suggest that the expression of whiB1 is indeed regulated by cAMP-dependent binding of CRPM (encoded by the M. tuberculosis gene Rv3676) to the whiB1 5′ untranslated region (5′UTR). β-Galactosidase gene fusion analysis revealed induction of the whiB1 promoter in M. tuberculosis on addition of exogenous dibutyric cAMP (a diffusible cAMP analogue) only when an intact CRP-binding site was present. These results indicate that M. tuberculosis whiB1 transcription is regulated in part by cAMP levels via direct binding of cAMP-activated CRPM to a consensus CRP-binding site in the whiB1 5′UTR.


1987 ◽  
Vol 1 (3) ◽  
pp. 201-203 ◽  
Author(s):  
Manda E. Gent ◽  
Silvia Gärtner ◽  
Angela M. Gronenborn ◽  
Rodica Sandulache ◽  
G.Marius Clore

FEBS Letters ◽  
2004 ◽  
Vol 563 (1-3) ◽  
pp. 55-58 ◽  
Author(s):  
Katsumi Omagari ◽  
Hidehisa Yoshimura ◽  
Mitsunori Takano ◽  
Dongyun Hao ◽  
Masayuki Ohmori ◽  
...  

Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 547-556 ◽  
Author(s):  
Claire L. Spreadbury ◽  
Mark J. Pallen ◽  
Tim Overton ◽  
Marcel A. Behr ◽  
Serge Mostowy ◽  
...  

The genome of Mycobacterium tuberculosis H37Rv includes a homologue of the CRP/FNR (cAMP receptor protein/fumarate and nitrate reduction regulator) family of transcription regulators encoded by Rv3676. Sequencing of the orthologous gene from attenuated Mycobacterium bovis Bacille Calmette–Guérin (BCG) strains revealed point mutations that affect the putative DNA-binding and cNMP-binding domains of the encoded protein. These mutations are not present in the published sequences of the Rv3676 orthologues in M. bovis, M. tuberculosis or Mycobacterium leprae. An Escherichia coli lacZ reporter system was used to show that the M. tuberculosis Rv3676 protein binds to DNA sites for CRP, but this DNA binding was decreased or abolished with the Rv3676 protein counterparts from BCG strains. The DNA-binding ability of the M. tuberculosis Rv3676 protein was decreased by the introduction of base changes corresponding to the BCG point mutations. Conversely, the DNA binding of the BCG Rv3676 proteins from BCG strains was restored by removing the mutations. These data show that in this reporter system the point mutations present in the Rv3676 orthologue in BCG strains render its function defective (early strains) or abolished (late strains) and suggest that this protein might be naturally defective in M. bovis BCG strains. This raises the possibility that a contributing factor to the attenuation of BCG strains may be an inability of this global regulator to control the expression of genes required for in vivo survival and persistence.


2001 ◽  
Vol 41 (supplement) ◽  
pp. S183
Author(s):  
A. Matsubuchi ◽  
N. Fujimoto ◽  
A. Toyama ◽  
H. Takeuchi

Biochemistry ◽  
1991 ◽  
Vol 30 (20) ◽  
pp. 5076-5080 ◽  
Author(s):  
Guo Shen Tan ◽  
Patrick Kelly ◽  
Jin Kim ◽  
Roger M. Wartell

Sign in / Sign up

Export Citation Format

Share Document