pcc 6803
Recently Published Documents


TOTAL DOCUMENTS

1888
(FIVE YEARS 257)

H-INDEX

81
(FIVE YEARS 8)

Author(s):  
Martina Bečková ◽  
Roman Sobotka ◽  
Josef Komenda

AbstractThe repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Kateryna Kukil ◽  
Pia Lindberg

Abstract Background Phenylpropanoids represent a diverse class of industrially important secondary metabolites, synthesized in plants from phenylalanine and tyrosine. Cyanobacteria have a great potential for sustainable production of phenylpropanoids directly from CO2, due to their photosynthetic lifestyle with a fast growth compared to plants and the ease of generating genetically engineered strains. This study focuses on photosynthetic production of the starting compounds of the phenylpropanoid pathway, trans-cinnamic acid and p-coumaric acid, in the unicellular cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). Results A selected set of phenylalanine ammonia lyase (PAL) enzymes from different organisms was overexpressed in Synechocystis, and the productivities of the resulting strains compared. To further improve the titer of target compounds, we evaluated the use of stronger expression cassettes for increasing PAL protein levels, as well as knock-out of the laccase gene slr1573, as this was previously reported to prevent degradation of the target compounds in the cell. Finally, to investigate the effect of growth conditions on the production of trans-cinnamic and p-coumaric acids from Synechocystis, cultivation conditions promoting rapid, high density growth were tested. Comparing the different PALs, the highest specific titer was achieved for the strain AtC, expressing PAL from Arabidopsis thaliana. A subsequent increase of protein level did not improve the productivity. Production of target compounds in strains where the slr1573 laccase had been knocked out was found to be lower compared to strains with wild type background, and the Δslr1573 strains exhibited a strong phenotype of slower growth rate and lower pigment content. Application of a high-density cultivation system for the growth of production strains allowed reaching the highest total titers of trans-cinnamic and p-coumaric acids reported so far, at around 0.8 and 0.4 g L−1, respectively, after 4 days. Conclusions Production of trans-cinnamic acid, unlike that of p-coumaric acid, is not limited by the protein level of heterologously expressed PAL in Synechocystis. High density cultivation led to higher titres of both products, while knocking out slr1573 did not have a positive effect on production. This work contributes to capability of exploiting the primary metabolism of cyanobacteria for sustainable production of plant phenylpropanoids.


Author(s):  
Eunice A. Ferreira ◽  
Catarina C. Pacheco ◽  
João S. Rodrigues ◽  
Filipe Pinto ◽  
Pedro Lamosa ◽  
...  

Among compatible solutes, glycine betaine has various applications in the fields of nutrition, pharmaceuticals, and cosmetics. Currently, this compound can be extracted from sugar beet plants or obtained by chemical synthesis, resulting in low yields or high carbon footprint, respectively. Hence, in this work we aimed at exploring the production of glycine betaine using the unicellular cyanobacterium Synechocystis sp. PCC 6803 as a photoautotrophic chassis. Synechocystis mutants lacking the native compatible solutes sucrose or/and glucosylglycerol—∆sps, ∆ggpS, and ∆sps∆ggpS—were generated and characterized. Under salt stress conditions, the growth was impaired and accumulation of glycogen decreased by ∼50% whereas the production of compatible solutes and extracellular polymeric substances (capsular and released ones) increased with salinity. These mutants were used as chassis for the implementation of a synthetic device based on the metabolic pathway described for the halophilic cyanobacterium Aphanothece halophytica for the production of the compatible solute glycine betaine. Transcription of ORFs comprising the device was shown to be stable and insulated from Synechocystis’ native regulatory network. Production of glycine betaine was achieved in all chassis tested, and was shown to increase with salinity. The introduction of the glycine betaine synthetic device into the ∆ggpS background improved its growth and enabled survival under 5% NaCl, which was not observed in the absence of the device. The maximum glycine betaine production [64.29 µmol/gDW (1.89 µmol/mg protein)] was reached in the ∆ggpS chassis grown under 3% NaCl. Taking into consideration this production under seawater-like salinity, and the identification of main key players involved in the carbon fluxes, this work paves the way for a feasible production of this, or other compatible solutes, using optimized Synechocystis chassis in a pilot-scale.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Shunichi Kobayashi ◽  
Shota Atsumi ◽  
Kazunori Ikebukuro ◽  
Koji Sode ◽  
Ryutaro Asano

Abstract Background Cyanobacteria are engineered via heterologous biosynthetic pathways to produce value-added chemicals via photosynthesis. Various chemicals have been successfully produced in engineered cyanobacteria. Chemical inducer-dependent promoters are used to induce the expression of target biosynthetic pathway genes. A chemical inducer is not ideal for large-scale reactions owing to its high cost; therefore, it is important to develop scaling-up methods to avoid their use. In this study, we designed a green light-inducible alcohol production system using the CcaS/CcaR green light gene expression system in the cyanobacterium Synechocystis sp. PCC 6803 (PCC 6803). Results To establish the green light-inducible production of isobutanol and 3-methyl-1-butanol (3MB) in PCC 6803, keto-acid decarboxylase (kdc) and alcohol dehydrogenase (adh) were expressed under the control of the CcaS/CcaR system. Increases in the transcription level were induced by irradiation with red and green light without severe effects on host cell growth. We found that the production of isobutanol and 3MB from carbon dioxide (CO2) was induced under red and green light illumination and was substantially repressed under red light illumination alone. Finally, production titers of isobutanol and 3MB reached 238 mg L−1 and 75 mg L−1, respectively, in 5 days under red and green light illumination, and these values are comparable to those reported in previous studies using chemical inducers. Conclusion A green light-induced alcohol production system was successfully integrated into cyanobacteria to produce value-added chemicals without using expensive chemical inducers. The green light-regulated production of isobutanol and 3MB from CO2 is eco-friendly and cost-effective. This study demonstrates that light regulation is a potential tool for producing chemicals and increases the feasibility of cyanobacterial bioprocesses. Graphical Abstract


2022 ◽  
Vol 178 ◽  
pp. 108297
Author(s):  
Kshitija Japhalekar ◽  
Sumana Srinivasan ◽  
Ganesh Viswanathan ◽  
K.V. Venkatesh

2021 ◽  
Vol 119 (1) ◽  
pp. e2116765118
Author(s):  
Christopher J. Gisriel ◽  
Jimin Wang ◽  
Jinchan Liu ◽  
David A. Flesher ◽  
Krystle M. Reiss ◽  
...  

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2757
Author(s):  
Delfim Cardoso ◽  
Steeve Lima ◽  
Jorge Matinha-Cardoso ◽  
Paula Tamagnini ◽  
Paulo Oliveira

Cyanobacteria are a group of photosynthetic prokaryotes that contribute to primary production on a global scale. These microorganisms release vesicles to the extracellular environment, spherical nanosized structures, derived essentially from the outer membrane. Even though earlier works in model Gram-negative bacteria have hypothesized that outer membrane stability is crucial in vesicle formation, the mechanisms determining vesicle biogenesis in cyanobacteria remain unknown. Here, we report on the identification of six candidate genes encoding outer membrane proteins harboring SLH/OprB-domains in the genome of the model cyanobacterium Synechocystis sp. PCC 6803. Using a genetics-based approach, one gene was found to encode an essential protein (Slr1841), while the remaining five are not essential for growth under standard conditions. Vesicle production was monitored, and it was found that a mutant in the gene encoding the second most abundant SLH/OprB protein in Synechocystis sp. PCC 6803 outer membrane (Slr1908) produces more vesicles than any of the other tested strains. Moreover, the Slr1908-protein was also found to be important for iron uptake. Altogether, our results suggest that proteins containing the SLH/OprB-domains may have dual biological role, related to micronutrient uptake and to outer membrane stability, which, together or alone, seem to be involved in cyanobacterial vesicle biogenesis.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 867
Author(s):  
Kosuke Inabe ◽  
Ayaka Miichi ◽  
Mami Matsuda ◽  
Takanobu Yoshida ◽  
Yuichi Kato ◽  
...  

Nitrogen is essential for the biosynthesis of various molecules in cells, such as amino acids and nucleotides, as well as several types of lipids and sugars. Cyanobacteria can assimilate several forms of nitrogen, including nitrate, ammonium, and urea, and the physiological and genetic responses to these nitrogen sources have been studied previously. However, the metabolic changes in cyanobacteria caused by different nitrogen sources have not yet been characterized. This study aimed to elucidate the influence of nitrate and ammonium on the metabolic profiles of the cyanobacterium Synechocystis sp. strain PCC 6803. When supplemented with NaNO3 or NH4Cl as the nitrogen source, Synechocystis sp. PCC 6803 grew faster in NH4Cl medium than in NaNO3 medium. Metabolome analysis indicated that some metabolites in the CBB cycle, glycolysis, and TCA cycle, and amino acids were more abundant when grown in NH4Cl medium than NaNO3 medium. 15N turnover rate analysis revealed that the nitrogen assimilation rate in NH4Cl medium was higher than in NaNO3 medium. These results indicate that the mechanism of nitrogen assimilation in the GS-GOGAT cycle differs between NaNO3 and NH4Cl. We conclude that the amounts and biosynthetic rate of cyanobacterial metabolites varies depending on the type of nitrogen.


2021 ◽  
Author(s):  
Ryo Kariyazono ◽  
Takashi Osanai

Sigma factors are the subunits of bacterial RNA polymerase that govern the expression of genes by recognizing the promoter sequence. Cyanobacteria, which are oxygenic phototrophic eubacteria, have multiple alternative sigma factors that respond to various environmental stresses. The subgroup highly homologous to the primary sigma factor (SigA) is called the group 2 sigma factor. The model cyanobacterium, Synechocystis sp. PCC 6803, has four group 2 sigma factors (SigB-E) conserved within the phylum Cyanobacteria. Among the group 2 sigma factors in Synechocystis sp. PCC 6803, SigE is unique because it alters metabolism by inducing the expression of genes related to sugar catabolism and nitrogen metabolism. However, the features of promoter sequence of the SigE regulon remains elusive. Here, we identified the direct targets of SigA and SigE by chromatin immunoprecipitation sequencing (ChIP-seq). We then showed that the binding sites of SigE and SigA overlapped substantially, but SigE exclusively localized to SigE-dependent promoters. We also found consensus sequences from SigE-dependent promoters and confirmed their importance. ChIP-seq analysis showed both the redundancy and specificity of SigE compared with SigA, integrating information obtained from a previously adopted genetic approach and in vitro assays. The features of SigE elucidated in our study indicate its similarity with group 2 sigma factors of other bacteria, even though they are evolutionally irrelevant. Our approach is also applicable to other organisms and organelles, such as plant plastids, which have multiple group 2 sigma factors.


Sign in / Sign up

Export Citation Format

Share Document