scholarly journals Structural and functional interactions between the Ca2+, ATP, and caffeine binding sites of skeletal muscle ryanodine receptor (RyR1)

2021 ◽  
pp. 101040
Author(s):  
Venkat R. Chirasani ◽  
Daniel A. Pasek ◽  
Gerhard Meissner
2001 ◽  
Vol 355 (3) ◽  
pp. 827-833 ◽  
Author(s):  
Markus KLINGER ◽  
Elisa BOFILL-CARDONA ◽  
Bernd MAYER ◽  
Christian NANOFF ◽  
Michael FREISSMUTH ◽  
...  

Calmodulin-binding sites on target proteins show considerable variation in primary sequence; hence compounds that block the access of calmodulin to these binding sites may be more selective than compounds that inactivate calmodulin. Suramin and its analogue NF307 inhibit the interaction of calmodulin with the ryanodine receptor. We have investigated whether inhibition of calmodulin binding to target proteins is a general property of these compounds. Suramin inhibited binding of [125I]calmodulin to porcine brain membranes and to sarcoplasmic reticulum from skeletal muscle (IC50 = 4.9±1.2µM and 19.9±1.8µM, respectively) and blocked the cross-linking of [125I]calmodulin to some, but not all, target proteins in brain membranes by [125I]calmodulin. Four calmodulin-binding proteins were purified [ryanodine receptor-1 (RyR1) from rabbit skeletal muscle, neuronal NO synthase (nNOS) from Sf9 cells, G-protein βγ dimers (Gβγ) from porcine brain and a glutathione S-transferase-fusion protein comprising the C-terminal calmodulin-binding domain of the metabotropic glutamate receptor 7A (GST-CmGluR7A) from bacterial lysates]. Three of the proteins employed (Gβγ, GST-CmGluR7A and RyR1) display a comparable affinity for calmodulin (in the range of 50–70nM). Nevertheless, suramin and NF307 only blocked the binding of Gβγ and RyR1 to calmodulin–Sepharose. In contrast, the association of GST-CmGluR7A and nNOS was not impaired, whereas excess calmodulin uniformly displaced all proteins from the matrix. Thus suramin and NF307 are prototypes of a new class of calmodulin antagonists that do not interact directly with calmodulin but with calmodulin-recognition sites. In addition, these compounds discriminate among calmodulin-binding motifs.


2021 ◽  
Vol 120 (3) ◽  
pp. 280a
Author(s):  
Venkat R. Chirasani ◽  
Daniel A. Pasek ◽  
Hannah G. Addis ◽  
Naohiro Yamaguchi ◽  
Gerhard Meissner

1994 ◽  
Vol 67 (6) ◽  
pp. 2286-2295 ◽  
Author(s):  
T. Wagenknecht ◽  
J. Berkowitz ◽  
R. Grassucci ◽  
A.P. Timerman ◽  
S. Fleischer

1992 ◽  
Vol 285 (1) ◽  
pp. 61-64 ◽  
Author(s):  
V Shoshan-Barmatz ◽  
A Zarka

In this paper we describe a simple, fast, one-step method for the purification of the skeletal-muscle ryanodine receptor. The ryanodine receptor from CHAPS-solubilized junctional sarcoplasmic-reticulum membranes was adsorbed to a spermine-agarose column and eluted by 2 mM-spermine. The purified receptor, consisting predominantly of a 450 kDa polypeptide on SDS/PAGE, binds [3H]ryanodine with a specific activity of approximately 300 pmol/mg of protein and with a high affinity (KD = 4.7 +/- 2 nM). The purified receptor appears to retain the pharmacological properties of the receptor in the original membranes. The purification resulted in over 80% recovery of the initial ryanodine-binding sites and about 30-96-fold purification. This simple and fast method is highly reproducible and suitable for purification of small as well as large quantities of ryanodine receptor.


Biochemistry ◽  
1994 ◽  
Vol 33 (31) ◽  
pp. 9078-9084 ◽  
Author(s):  
Paola Menegazzi ◽  
Fulvia Larini ◽  
Susan Treves ◽  
Remo Guerrini ◽  
Manfredo Quadroni ◽  
...  

2004 ◽  
Vol 96 (5) ◽  
pp. 1619-1625 ◽  
Author(s):  
Christopher P. Ingalls ◽  
Gordon L. Warren ◽  
Jia-Zheng Zhang ◽  
Susan L. Hamilton ◽  
R. B. Armstrong

The purpose of this study was to determine whether there are alterations in the dihydropyridine and/or ryanodine receptors that might explain the excitation-contraction uncoupling associated with eccentric contraction-induced skeletal muscle injury. The left anterior crural muscles (i.e., tibialis anterior, extensor digitorum longus, and extensor hallucis longus) of mice were injured in vivo by 150 eccentric contractions. Peak isometric tetanic torque of the anterior crural muscles was reduced ∼45% immediately and 3 days after the eccentric contractions. Partial restoration of peak isometric tetanic and subtetanic forces of injured extensor digitorum longus muscles by 10 mM caffeine indicated the presence of excitation-contraction uncoupling. Scatchard analysis of [3H]ryanodine binding indicated that the number of ryanodine receptor binding sites was not altered immediately postinjury but decreased 16% 3 days later. Dihydropyridine receptor binding sites increased ∼20% immediately after and were elevated to the same extent 3 days after the injury protocol. Muscle injury did not alter the sensitivity of either receptor. These data suggest that a loss or altered sensitivity of the dihydropyridine and ryanodine receptors does not contribute to the excitation-contraction uncoupling immediately after contraction-induced muscle injury. We also concluded that the loss in ryanodine receptors 3 days after injury is not the primary cause of excitation-contraction uncoupling at that time.


Author(s):  
A. V. Somlyo ◽  
H. Shuman ◽  
A. P. Somlyo

Electron probe analysis of frozen dried cryosections of frog skeletal muscle, rabbit vascular smooth muscle and of isolated, hyperpermeab1 e rabbit cardiac myocytes has been used to determine the composition of the cytoplasm and organelles in the resting state as well as during contraction. The concentration of elements within the organelles reflects the permeabilities of the organelle membranes to the cytoplasmic ions as well as binding sites. The measurements of [Ca] in the sarcoplasmic reticulum (SR) and mitochondria at rest and during contraction, have direct bearing on their role as release and/or storage sites for Ca in situ.


Sign in / Sign up

Export Citation Format

Share Document