scholarly journals Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods

2020 ◽  
Vol 111 ◽  
pp. 103575 ◽  
Author(s):  
Matheus Henrique Dal Molin Ribeiro ◽  
Viviana Cocco Mariani ◽  
Leandro dos Santos Coelho
Energy ◽  
2017 ◽  
Vol 125 ◽  
pp. 681-704 ◽  
Author(s):  
Yunfei Cui ◽  
Zhiqiang Geng ◽  
Qunxiong Zhu ◽  
Yongming Han

2015 ◽  
Vol 756 ◽  
pp. 646-651
Author(s):  
Artyom Olegovich Igumnov ◽  
Dmitry Mikhailovich Sonkin ◽  
Sergey Anatolevich Khrul

This paper considers the problem of request distribution in a taxi company for workload optimization. A combined algorithm for request distribution using multi-objective optimization methods is offered.


2014 ◽  
Vol 23 (02) ◽  
pp. 1450002 ◽  
Author(s):  
J. M. Herrero ◽  
G. Reynoso-Meza ◽  
M. Martínez ◽  
X. Blasco ◽  
J. Sanchis

Obtaining multi-objective optimization solutions with a small number of points smartly distributed along the Pareto front is a challenge. Optimization methods, such as the normalized normal constraint (NNC), propose the use of a filter to achieve a smart Pareto front distribution. The NCC optimization method presents several disadvantages related with the procedure itself, initial condition dependency, and computational burden. In this article, the epsilon-variable multi-objective genetic algorithm (ev-MOGA) is presented. This algorithm characterizes the Pareto front in a smart way and removes the disadvantages of the NNC method. Finally, examples of a three-bar truss design and controller tuning optimizations are presented for comparison purposes.


2013 ◽  
Vol 303-306 ◽  
pp. 1494-1500
Author(s):  
Jian Wei Wang ◽  
Jian Ming Zhang

Aiming at effectively overcoming the disadvantages of traditional evolutionary algorithm which converge slowly and easily run into local extremism, an improved adaptive evolutionary algorithms is proposed. Firstly, in order to choose the optimal objective fitness value from the population in every generation, the absolute and relative fitness are defined. Secondly, fuzzy technique is adopted to adjust the weights of objective functions, crossover probability, mutation probability, crossover positions and mutation positions during the iterative process. Finally, three classical test functions are given to illustrate the validity of improved adaptive evolutionary algorithm, simulation results show that the diversity and practicability of the optimal solution set are better by using the proposed method than other multi-objective optimization methods.


Sign in / Sign up

Export Citation Format

Share Document